

# **RFID Systems**

Bulletin Number 56RF



by **ROCKWELL AUTOMATION** 

**User Manual** 

**Original Instructions** 

# **Important User Information**

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.



**WARNING:** Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.



**ATTENTION:** Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

**IMPORTANT** Identifies information that is critical for successful application and understanding of the product.

These labels may also be on or inside the equipment to provide specific precautions.



**SHOCK HAZARD:** Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.



BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.



**ARC FLASH HAZARD:** Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

The following icon may appear in the text of this document.



Identifies information that is useful and can help to make a process easier to do or easier to understand.

### **Table of Contents**

| 9 |
|---|
|   |
|   |
|   |

### Introduction

**RFID Components** 

**Electrical Installation** 

### Chapter 1

| RFID Defined                      | 11 |
|-----------------------------------|----|
| International Standard Compliance | 11 |
| FCC Caution                       | 12 |
| Taiwan NCC Warning Statement      | 12 |
| Backward Compatibility.           | 13 |
| System Setup                      | 13 |

### Chapter 2

| •                                          |    |
|--------------------------------------------|----|
| Interface Block                            | 15 |
| Status Indicators                          | 16 |
| Transceivers                               | 17 |
| Status Indicators                          |    |
| Transceiver Power-up Sequence              | 18 |
| RFID Tags                                  | 18 |
| Tag Memory Structure                       |    |
| SLI                                        |    |
| Smart Label IC – Secure (SLI-S)            |    |
| Smart Label IC – Lean (SLI-L)              |    |
| Ferroelectric Random Access Memory (FRAM). | 23 |
| Product Selection                          |    |
| Main Components                            |    |
| Accessories                                |    |
|                                            |    |

### Chapter 3

| Cable Overview                               | . 27 |
|----------------------------------------------|------|
| Auxiliary Power Connection                   | . 27 |
| Power Connection Options                     | . 28 |
| Example 1: Daisy Chain the Power Connections | . 28 |
| Example 2: System Needs More Than 4 A        | . 28 |
| Transceiver Connection                       | . 29 |
| Digital Input Connection                     | . 29 |
| Digital Output Connection                    | . 29 |
| EtherNet/IP Connection                       | . 30 |

|                                                             | Chapter 4                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EtherNet/IP Addressing                                      | Star Topology31Linear Topology31Device Level Ring (DLR) Topology32Setting the Network Address33Fundamental IP Addresses: 192.168.1.xxx33Advanced IP Addresses34Change IP Address from One Advanced Address to Another Advanced Address37IP Address 88839 |
|                                                             | Chapter 5                                                                                                                                                                                                                                                |
| Mechanical Installation                                     | Fastening.41Spacing Between Transceivers.41Spacing Next to Metal Surfaces42Transceiver Field Maps42Approximate Dimensions.44                                                                                                                             |
|                                                             | Chapter 6                                                                                                                                                                                                                                                |
| Add Your RFID Interface Block to<br>an RSLogix 5000 Program | Procedure45General Tab47MAC Address47Module Definition48Connection Tab48Module Info Tab49Internet Protocol Tab50Port Configuration Tab50                                                                                                                 |
|                                                             | Chapter 7                                                                                                                                                                                                                                                |
| RSLogix 5000 Controller Tags                                | Configuration Image Table and Tags54Input Image Table and Tags55Input Channel Tags56Output Image Table and Tags57Output Channel Tags58                                                                                                                   |
|                                                             | Chapter 8                                                                                                                                                                                                                                                |
| Commands Summary                                            | RFID Commands 61                                                                                                                                                                                                                                         |
|                                                             | Chapter 9                                                                                                                                                                                                                                                |
| Add-On Instruction                                          | Introduction.63Supported Modules.63High-frequency Transceivers63High-frequency Tags64AOI Specification.64AOI Input Tags.64AOI Output Tags.66AOI Interface Tags.67Support Command68                                                                       |

| . 68 |
|------|
| . 69 |
| . 69 |
| . 70 |
| . 71 |
| . 71 |
| . 72 |
| . 72 |
|      |

### **RSLogix 5000 Code Examples**

### Chapter 10

| Main Routine                        | 73 |
|-------------------------------------|----|
| Example Command Routines - Overview | 73 |
| Rung 0                              |    |
| Rung 1                              | 74 |
| Rung 2                              |    |
| Rung 3                              |    |
| Rung 4                              | 75 |
| Clear Multiple Bytes                |    |
| Example Routine                     |    |
| Example Results                     |    |
| Get Multiple Block Security Status  |    |
| Example Routine                     |    |
| Example Results                     |    |
| Get System Information              |    |
| Example Routine                     |    |
| Example Results                     |    |
| Get Version Information             |    |
| Example Routine                     |    |
| Example Results                     |    |
| Inventory                           |    |
| Example Routine                     |    |
| Example Results                     | 83 |
| Lock AFI                            | 85 |
| Example Routine                     | 85 |
| Example Results                     | 86 |
| Lock Block                          | 86 |
| Example Routine                     | 86 |
| Example Results                     | 87 |
| Lock DSFID.                         | 88 |
| Example Routine                     | 88 |
| Example Results                     | 89 |
| Read Byte Command                   | 89 |
| Example Routine                     | 89 |
| Example Results                     | 90 |
| Multi-tag Block Read.               | 91 |
| Example Routine                     | 91 |
| Example Results                     | 92 |
|                                     |    |

|                                      | Read Multiple Blocks      | . 93  |
|--------------------------------------|---------------------------|-------|
|                                      | Example Routine           |       |
|                                      | Example Results           | . 94  |
|                                      | Read Single Block         | . 95  |
|                                      | Example Routine           | . 95  |
|                                      | Example Results           | . 96  |
|                                      | Read Transceiver Settings | . 97  |
|                                      | Example Routine           | . 97  |
|                                      | Example Results           |       |
|                                      | Write AFI                 | . 98  |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Write Byte Command        |       |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Write DSFID               |       |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Write Multiple Blocks     |       |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Multi-tag Block Write     |       |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Write Single Block.       |       |
|                                      | Example Routine           |       |
|                                      | Example Results           |       |
|                                      | Continuous Read Mode      |       |
|                                      | Stop Continuous Read      |       |
|                                      | Teach Continuous Read     | 109   |
|                                      | Chapter 11                |       |
| SLC Code Examples                    | Read Byte Routine         | . 111 |
|                                      | Example Routine           |       |
|                                      | Example Routine           |       |
|                                      | Chapter 12                |       |
| Mienel e size 1/ 00 0e de Freemale e | -                         | 110   |
| MicroLogix 1400 Code Examples        | Read ByteExample Routine  |       |
|                                      | Write Byte                | 117   |
|                                      | Example Routine           | 117   |
|                                      | Read Multiple Blocks      | 117   |
|                                      | Example Routine           | 118   |
|                                      | Write Multiple Blocks     | 118   |
|                                      | Example Routine           | 118   |
|                                      | Input Image Layout        |       |
|                                      | Output Image Layout       | 118   |

| RFID Tag Speed                          | Continuous Read Mode.<br>Command Objective .<br>Operation .<br>Modes of Operation.<br>Mode Overview.<br>Command Structure .<br>Teach Continuous Read .<br>Command Objective .<br>Operation .<br>Command Structure . | 120<br>120<br>121<br>121<br>121<br>121<br>122<br>122<br>122 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                         | Chapter 14                                                                                                                                                                                                          |                                                             |
| RFID Interface Block Webpage            | Home<br>Diagnostics                                                                                                                                                                                                 | 125                                                         |
|                                         | Network Settings                                                                                                                                                                                                    |                                                             |
|                                         | Ethernet Statistics                                                                                                                                                                                                 |                                                             |
|                                         | Configuration                                                                                                                                                                                                       |                                                             |
|                                         | Device Identity                                                                                                                                                                                                     |                                                             |
|                                         | Network Configuration.                                                                                                                                                                                              |                                                             |
|                                         | Device Services                                                                                                                                                                                                     | 128                                                         |
|                                         | Appendix A                                                                                                                                                                                                          |                                                             |
| Error Codes for RFID Interface<br>Block | Error Codes                                                                                                                                                                                                         | 129                                                         |
|                                         | Appendix B                                                                                                                                                                                                          |                                                             |
| CIP Information                         | Product Codes and Name Strings                                                                                                                                                                                      | 131                                                         |
|                                         | CIP Explicit Connection Behavior                                                                                                                                                                                    |                                                             |
|                                         | CIP Objects                                                                                                                                                                                                         | 131                                                         |
|                                         | Identity Object Class Code 0x0001                                                                                                                                                                                   |                                                             |
|                                         | Assembly Object Class Code 0x0004                                                                                                                                                                                   | 133                                                         |
|                                         | Read the Input Image Table of a 56RF-IN-IPD22 Interface Block                                                                                                                                                       |                                                             |
|                                         | with a MicroLogix 1400.                                                                                                                                                                                             | 134                                                         |
|                                         | Input Image (56RF-IN-IPD22 Interface Block)                                                                                                                                                                         |                                                             |
|                                         | Input Image (56RF-IN-IPD22A Interface Block)                                                                                                                                                                        |                                                             |
|                                         | Input Image (56RF-IN-IPS12 Interface Block)                                                                                                                                                                         | . IJ/                                                       |
|                                         | with a MicroLogix 1400                                                                                                                                                                                              | 138                                                         |
|                                         | Input Image (56RF-IN-IPD22 Interface Block)                                                                                                                                                                         |                                                             |
|                                         | Input Image (56RF-IN-IPD22A Interface Block)                                                                                                                                                                        |                                                             |
|                                         | Input Image (56RF-IN-IPS12 Interface Block).                                                                                                                                                                        |                                                             |
|                                         | Read the Input Image Table of a 56RF-IN-IPD22 Interface Block with an SLC-5/05 .                                                                                                                                    |                                                             |

Chapter 13

Class 1 Connections142Exclusive Owner Connection142Input Only Connection142Listen-only Connection143Class 3 Connections143

|                            | Discrete Input Point Object Class Code 0x0008<br>Discrete Output Point Object Class Code 0x0009 |       |
|----------------------------|-------------------------------------------------------------------------------------------------|-------|
| Install the Add-on Profile | Appendix C<br>Introduction                                                                      | . 147 |
| Troubleshooting            | Appendix D Common Solutions                                                                     | . 149 |

### Who Should Use this Manual

Purpose of this Manual

Use this manual if you are responsible for design, installation, programming, or troubleshooting of control systems that use Bulletin 56RF RFID products.

You must have a basic understanding of electrical circuitry and familiarity with relay logic. If you do not, obtain the proper training before using this product.

This quick start guide assumes you have some familiarity with RSLogix™ software. This guide provides an example of steps to follow to configure and make functional a 56RF RFID system. The reader must refer to the appropriate user manuals for other details. You must use this manual to accomplish the following:

- Learn how to install and wire an example RFID system
- Install and configure the module in an RSLogix 5000<sup>®</sup> program
- Built a simple program to receive and transmit data to an RFID tag

### **Summary of Changes**

This publication contains the following new or updated information. This list includes substantive updates only and is not intended to reflect all changes.

| Торіс                                | Page |
|--------------------------------------|------|
| Updated Abbreviations section        | 9    |
| Updated Additional Resources section | 10   |
| Added Approximate Dimensions section | 44   |
| Added Add-On Instruction chapter     | 63   |
| Updated Error Codes section          | 129  |

### **Abbreviations**

| Abbreviation | Definition                                   |
|--------------|----------------------------------------------|
| AFI          | Application Family Identifier                |
| AOI          | Add On Instruction                           |
| AOP          | Add-on Profile                               |
| DFSID        | Data Storage Format Identifier               |
| DHCP         | Dynamic Host Configuration Protocol          |
| DNS          | Domain Name Server                           |
| DoS          | Disk Operating System                        |
| EAS          | Electronic Article Surveillance              |
| FE           | Functional Earth                             |
| FRAM         | Ferroelectric Random Access<br>Memory        |
| IEC          | International Electrotechnical<br>Commission |
| INT          | Signed, two byte integer                     |

| Abbreviation | Definition                                        |
|--------------|---------------------------------------------------|
| ISO          | International Organization for<br>Standardization |
| JTC          | Joint Technical Committee                         |
| MAC address  | Media Access Control (Ethernet)<br>address        |
| MACID        | Media Access Control Identification               |
| QD           | Quick Disconnect                                  |
| RFID         | Radio Frequency Identification                    |
| SB           | Subcommittee                                      |
| SINT         | Signed, single-byte integer                       |
| UID          | Unique Identifier                                 |
| UUID         | Universally Unique Identifier                     |

### **Additional Resources**

These documents contain additional information concerning related products from Rockwell Automation.

| Resource                                                                                                               | Description                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| High Frequency 13.56 MHz RFID EtherNet/IP Interface Block<br>Installation Instructions, publication <u>56RF-IN008</u>  | Provides information that is required to install RFID interface blocks.                                                   |
| Bulletin 56RF RFID Square 40x40 mm Transceiver<br>Installation Instructions, publication <u>56RF-IN009</u>             | Provides information that is required to install 40x40 mm transceivers.                                                   |
| Bulletin 56RF Rectangular 80x90 mm Transceiver<br>Installation Instructions, publication <u>56RF-IN010</u>             | Provides information that is required to install 80x90 mm transceivers.                                                   |
| High Temperature ICODE Tag (High Frequency RFID 13.56<br>MHz) Installation Instructions, publication <u>56RF-IN011</u> | Provides information that is required to install high temperature ICODE tags.                                             |
| Bulletin 56RF RFID 30 mm Cylindrical Transceiver<br>Installation Instructions, publication <u>56RF-IN013</u>           | Provides information that is required to install 30 mm cylindrical transceivers.                                          |
| RFID Specifications Technical Data,<br>publication <u>56RF-TD001</u>                                                   | Provides specifications for 56RF products.                                                                                |
| EtherNet/IP Network Devices User Manual, publication<br>ENET-UM006                                                     | This manual describes how to use EtherNet/IP<br>communication modules in Logix 5000™ control<br>systems.                  |
| Allen-Bradley Industrial Automation Glossary, <u>AG-7.1</u>                                                            | A glossary of industrial automation terms and abbreviations.                                                              |
| EtherNet/IP Device Level Ring Application Technique, publication ENET-AT007                                            | This publication describes DLR network operation,<br>topologies, configuration considerations, and<br>diagnostic methods. |
| Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>                                     | Provides general guidelines for installing a Rockwell<br>Automation® industrial system.                                   |
| Product Certifications website, <u>rok.auto/certifications</u>                                                         | Provides declarations of conformity, certificates, and other certification details.                                       |

You can view or download publications at <u>rok.auto/literature</u>.

# Introduction

| RFID (Radio Frequency Identification) is a method to communicate information from one point to another point by the use of electromagnetic waves (radio waves). RFID has unique characteristics that make it attractive for use in industrial systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For example, you have a shipping carton that must be loaded with various goods to meet the specific purchase order of a customer. You can attach a tag to the carton. Before attaching the tag, you fill the tag with the specific items that the customer wants. Then, as the carton moves to the filling stations, each station places the required objects into the carton. If the tag does not require an item, the station is skipped.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Each filling station has an RFID transceiver. The transceiver reads and writes to the tag. When the tag approaches the RFID transceiver, the transceiver reads the contents of the tag. Based on the information that is received, the packaging process adds items (or skips this step) and then writes to the tag that one or more items were added. The carton moves to the next filling station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This scenario is a common use of RFID technology. The Bulletin 56RF product line is unique because of its conformance to the open international standards: ISO15693 and ISO18000-3 M1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISO/IEC 15693 is an ISO standard for vicinity tags. Vicinity tags, commonly referred to as ICODE tags, can be read from a greater distance than proximity tags and closed couple tags. ISO/IEC 15693 systems operate at the 13.56 MHz frequency, and offer a maximum read distance of 11.5 m (3.34.9 ft), depending on the transceiver. Library applications with large antennas are capable of these distances. Most industrial applications are less than 203.2 mm (8 in.) for a read/write range.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The ICODE compatible tags permit you to use lower-cost tags than proprietary systems currently provide. You can use tag configuration options from multiple vendors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ISO/IEC 15693 forms part of a series of International Standards that specify non-contact tags.<br>The tags can be attached to objects, like cartons, bags, and valuable items, which can then be<br>tracked while in the vicinity of a reading device. ISO/IEC 15693-2:2006 defines the power and<br>communications interface between the vicinity card and the reading device. Other parts of<br>ISO/IEC 15693 define the physical dimensions of the card and the commands that the card and<br>reader interpret.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| An AC field that is produced in the transceiver couples power to the tag. The powering field has<br>a frequency of 13.56 MHz and is one of the industrial, scientific, and medical (ISM) frequencies<br>available for worldwide use. When the tag receives sufficient power, it is able to respond to<br>commands sent from the coupler. The coupler sends commands to the card by modulating the<br>powering field and by using a modulation system that is known as pulse position modulation.<br>The position of one pulse relative to a known reference point codes the value of a nibble or<br>byte of data. This process allows the card to draw the maximum energy from the field almost<br>continuously. Tags, which have no power source, can be energized at ranges of up to 1 m<br>(3.3 ft) from a coupler that can only transmit power within the limits that international radio<br>frequency (RF) regulations permit. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

A tag only responds when it receives a valid command that selects one tag from a possible collection of cards within range of the coupler. This process of collision detection and selection, also known as anti-collision, is made possible by detecting the unique identification number encoded into every tag. Anti-collision, and the commands that are used, are defined in ISO/IEC 15693-3. The tag responds to the transceiver by drawing more or less power from the field and generates one or two subcarriers of around 450 kHz that are switched on and off to provide special-encoded data that the transceiver detects.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device causes no harmful interference.
- 2. This device must accept any interference received, including interference that can cause undesired operation.

### **FCC Caution**

Changes or modifications that are not expressly approved by the party responsible for compliance can void the authority of the user to operate the equipment.

#### **Taiwan NCC Warning Statement**

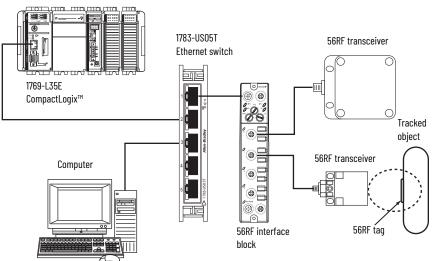
根據低功率電波輻射性電機管理辦法規定:

- 第十二條 經型式認證合格之低功率射頻電機,非經許可,公司、商號或使用者 均不得擅自變更頻率、加大功率或變更原設計之特性及功能。
- 第十四條 低功率射頻電機之使用不得影響飛航安全及干擾合法通信;經發現有 干擾現象時,應立即停用,並改善至無干擾時方得繼續使用。 前項合法通信,指依電信法規定作業之無線電通信。低功率射頻電機 須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。 取得審驗證明之低功率射頻器材,非經核准,公司、商號或使用者均不得擅 自變更頻率、加大功率或變更原設計之特性及功能。 低功率射頻器材之使用不得影響飛航安全及干擾合法通信;經發現有干擾 現象時,應立即停用,並改善至無干擾時方得繼續使用。 前述合法通信,指依電信管理法規定作業之無線電通信。 低功率射頻器材須忍受合法通信或工業、科學及醫療用電波輻射性電機設備 之干擾。

Date of manufacture (year/month) is written on package.

**IMPORTANT** This equipment has been tested and found to comply with the limits for a Class A digital device, according to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, can cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user is required to correct the interference at their own expense. This device must be installed and operated keeping at minimum 200 mm (0.79 in.) away from bodies.

This device must be installed with a DC power cable that is under 3 m (9.84 ft) long. If the DC power cable of the radio and/or the ancillary equipment is less than or equal to 3 m (9.84 ft) in length, there is no need to conduct an emission test.


### **Backward Compatibility**

The 56RF RFID system is offered on EtherNet/IP<sup>™</sup> and is backward compatible with the previous offering of 56RF ICODE products. The transceivers and interface blocks are a matched pair so they cannot be interchanged. However, the tags can be interchanged with either system if they are ICODE tags. Both systems can read and write these tags seamlessly.

### System Setup

<u>Figure 1</u> shows a simple RFID system. This user manual describes the setup, installation, and programming that is required to get this system running.

#### Figure 1 - RFID System



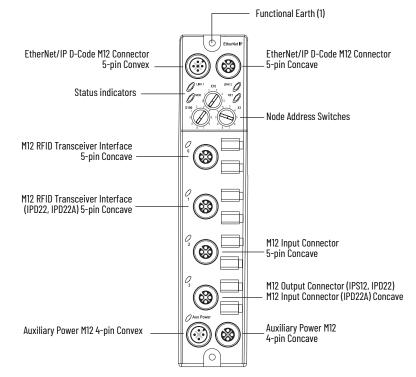
Tags are attached to objects that must be tracked. The tags hold important information about the object. An RF transceiver reads and/or writes information to the tags when the tag moves within the transmission envelope of the transceiver (dotted ellipse). The physical size of the transceiver is directly related to the size of the transmission field. The larger the transceiver, the longer and wider the antenna field is. See the transceiver installation instructions for antenna field sizes (see <u>Additional Resources on page 10</u>).

The transceivers are connected to a special RFID EtherNet/IP interface block. The distribution block has an Ethernet connection to an Ethernet switch. A 1759-L35E CompactLogix controller and a personal computer also have Ethernet connections to the Ethernet switch.

### Notes:

# **RFID Components**

### **Interface Block**

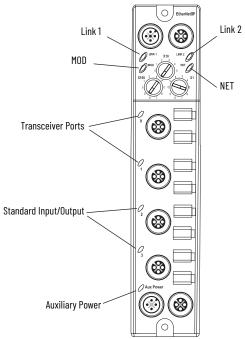

Three different interface blocks are available. <u>Table 1</u> shows the type of ports for each catalog number.

#### Table 1 - Type of Ports

| Transceiver Ports | Input Ports | Output Ports | Cat. No.       |
|-------------------|-------------|--------------|----------------|
| 1                 | 1           | 1            | 56RF-IN-IPS12  |
| 2                 | 1           | 1            | 56RF-IN-IPD22  |
| 2                 | 2           | 0            | 56RF-IN-IPD22A |

Figure 2 identifies the connections for the EtherNet/IP<sup>TM</sup>, RF transceivers, input devices, output devices, and power.

#### Figure 2 - Connections




### **Status Indicators**

When the status indicator is flashing, all flashes are 0.25 s on and 0.25 s off.

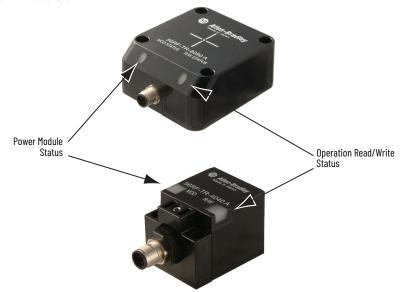
This block has the seven status indicators.

#### Figure 3 - Status Indicators



#### **Table 2 - Status Indicators**

| Status<br>Indicator<br>Name | Status Indicator<br>State | Indicates                                                                                                                                                                                                                                                                    |
|-----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Off                       | No link                                                                                                                                                                                                                                                                      |
|                             | Green                     | 100 Mbps                                                                                                                                                                                                                                                                     |
| Link1 and Link2             | Flashing green            | 100 Mbps/active                                                                                                                                                                                                                                                              |
|                             | Yellow                    | 10 Mbps                                                                                                                                                                                                                                                                      |
|                             | Flashing yellow           | 10 Mbps/active                                                                                                                                                                                                                                                               |
|                             | Off                       | There is no power applied to the block.                                                                                                                                                                                                                                      |
|                             | Flashing red/<br>green    | Device in self-test                                                                                                                                                                                                                                                          |
|                             | Green                     | The block is operating in a normal condition.                                                                                                                                                                                                                                |
| MOD (Module)                | Flashing green            | Standby. The device is not communicating with the interface block. Normal state when only power has been applied to the transceiver.                                                                                                                                         |
|                             | Flashing red              | Recoverable fault. Most often occurs when data is corrupted between interface<br>block and transceiver. CRC failures and so on. Recommended solution is to<br>remove electrical noise near cabling or reduce communication rate between<br>transceiver and interface block.  |
|                             | Red                       | The transceiver has an unrecoverable fault; can need replacing.                                                                                                                                                                                                              |
|                             | Off                       | There is no power or no IP address.                                                                                                                                                                                                                                          |
|                             | Flashing red/<br>green    | Device in self-test                                                                                                                                                                                                                                                          |
|                             | Green                     | The block is operating in a normal condition.                                                                                                                                                                                                                                |
| NET (Network)               | Flashing green            | Standby. The device is not communicating with the interface block. Normal state when only power has been applied to the transceiver.                                                                                                                                         |
|                             | Flashing red              | Connection timeout. Most often occurs when data is corrupted between<br>interface block and transceiver. CRC failures and so on. Recommended<br>solution is to remove electrical noise near cabling or reduce communication<br>rate between transceiver and interface block. |
|                             | Red                       | Duplicate IP address. The transceiver has an unrecoverable fault; can need replacing.                                                                                                                                                                                        |


| Status<br>Indicator<br>Name | Status Indicator<br>State | Indicates                                        |  |  |  |  |
|-----------------------------|---------------------------|--------------------------------------------------|--|--|--|--|
|                             | Off                       | Outputs inactive<br>Inputs inactive              |  |  |  |  |
|                             | Yellow                    | Outputs active<br>Inputs active                  |  |  |  |  |
| Standard I/O                | Flashing green            | Outputs are idled and not faulted.               |  |  |  |  |
|                             | Flashing red              | Output faulted<br>Inputs faulted                 |  |  |  |  |
|                             | Red                       | Outputs forced off<br>Inputs unrecoverable fault |  |  |  |  |
|                             | Off                       | No power is applied.                             |  |  |  |  |
| Aux Power                   | Steady green              | The applied voltage is within specifications.    |  |  |  |  |
|                             | Steady yellow             | The input power is out of specification.         |  |  |  |  |
|                             | Off                       | No power                                         |  |  |  |  |
|                             | Flashing green            | No tag present, but communicating.               |  |  |  |  |
| <b>RFID Port</b>            | Green                     | Communicating                                    |  |  |  |  |
|                             | Flashing red              | No transceiver is connected.                     |  |  |  |  |
|                             | Amber                     | Tag present                                      |  |  |  |  |

#### Table 2 - Status Indicators (Continued)

### **Transceivers**

### **Status Indicators**

#### Figure 4 - Indicators



#### Table 3 - Status Indicators

| Status<br>Indicator Name | Status<br>Indicator<br>State | Indicates                                                                                                         |
|--------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                          | Off                          | There is no power applied to the block.                                                                           |
| Module Status            | Green                        | The block is operating in a normal condition.                                                                     |
|                          | Red                          | The transceiver has an unrecoverable fault; can need replacing.                                                   |
|                          | Off                          | There is no power applied to the device.                                                                          |
| Read/Write               | Green                        | The EtherNet/IP interface block is communicating with the transceiver, but no tag is present. No errors received. |
| Status                   | Amber                        | A tag is present within the antenna field.                                                                        |
|                          | Red                          | A communication error has occurred. Examples are: bad read/write, corrupt $CRC^{(1)}$                             |

(1) If a read/write command is not completed while the tag is within the field, an error occurs.

#### **Transceiver Power-up Sequence**

- 1. Both status indicators off.
- 2. Power status indicator turns green. R/W status turns green for 0.25 s.
- 3. R/W status indicator turns red for 0.25 s.
- 4. R/W status indicator turns off for 3...5 s.
- 5. R/W status indicator turns amber for 0.5 s.
- 6. R/W status indicator turns green.

### **RFID Tags**

RF tags come in many shapes and sizes. In general, the bigger the tag, the longer the sensing distance from the transceiver. <u>Table 4</u> summarizes the size of the memory for each type of tag.

#### Table 4 - Memory

| Tog Tupo | Total Tag  |              |               |                 |
|----------|------------|--------------|---------------|-----------------|
| Tag Type | Memory     | No. of Bytes | No. of Blocks | Bytes Per Block |
| SLI      | 128 bytes  | 112 bytes    | 28            | 4               |
| SLI-S    | 256 bytes  | 160 bytes    | 40            | 4               |
| SLI-L    | 64 bytes   | 32 bytes     | 8             | 4               |
| FRAM     | 2048 bytes | 2 kB         | 250           | 8               |

#### **Tag Memory Structure**

There are five types of tag memory structure:

- Universally Unique Identifier (UUID)
- Application Family Identifier (AFI)
- Data Storage Format Identifier (DSFID)
- Electronic Article Surveillance (EAS)
- Smart Label Integrated Circuit (SLI)

Universally Unique Identifier (UUID)

Each tag has a unique 64 bit hexadecimal UUID that is programmed during the production process according to ISO/IEC 15693-3 and cannot be changed afterwards.

The numbering of the 64 bits is done according to ISO/IEC 15693-3; numbering starts with the least significant bit (LSB) 1 and ends with the most significant bit (MSB) 64. This way is in contrast to the general used bit numbering within a byte (starts with LSB 0).

Byte 5 (bit 41...48) is the tag type. Byte 6 (bit 49...56) is the manufacturer code, which coincides with the number of bytes/block.

Table 5 shows the structure of our RFID tags.

#### Table 5 - Tag Structure

| By    | rte   | 7     | 6     | 5     | 4 3 2 1 0                  |  |  | 0 |       |
|-------|-------|-------|-------|-------|----------------------------|--|--|---|-------|
| Na    | me    | UID 7 | UID 6 | UID 5 | UID 4 UID 3 UID 2 UID 1 UI |  |  |   | UID O |
| В     | it    | 6457  | 5649  | 4841  | 401                        |  |  |   |       |
|       | SLI   | EO    | 04    | 01    | Unique Serial Number       |  |  |   |       |
| Value | SLI-S | EO    | 04    | 02    | Unique Serial Number       |  |  |   |       |
| Value | SLI-L | EO    | 04    | 03    | Unique Serial Number       |  |  |   |       |
|       | FRAM  | EO    | 08    | 01    | Unique Serial Number       |  |  |   |       |

#### Application Family Identifier (AFI)

The AFI represents the type of application targeted. AFI is coded on 1 byte, which constitutes two nibbles of 4 bits each. The most significant nibble of AFI is used to code one specific or all application families, as defined in

<u>Table 6</u>. The least significant nibble of AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary.

| AFI Most<br>Significant Nibble | AFI Least<br>Significant Nibble | Meaning                                                                                            | Examples/Notes                 |
|--------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|
| 0                              | 0                               | All families and subfamilies                                                                       | No applicative preselection    |
| Х                              | 0                               | All subfamilies of family X                                                                        | Wide applicative preselection  |
| Х                              | Y                               | Only the Yth subfamily of family X                                                                 | -                              |
| 0                              | Y                               | Proprietary subfamily Y only                                                                       | -                              |
| 1                              | 0, Y                            | Transport                                                                                          | Mass transit, bus, airline     |
| 2                              | 0, Y                            | Financial                                                                                          | IEP, banking, retail           |
| 3                              | 0, Y                            | Identification                                                                                     | Access control                 |
| 4                              | 0, Y                            | Telecommunication                                                                                  | Public telephony, GSM          |
| 5                              | 0, Y                            | Medical                                                                                            | -                              |
| 6                              | 0, Y                            | Multimedia                                                                                         | Internet service               |
| 7                              | 0, Y                            | Gaming                                                                                             | -                              |
| 8                              | 0, Y                            | Data storage                                                                                       | Portable files                 |
| 9                              | 0, Y                            | EAN-UCC (European Article<br>Numbering-Uniform Code Council)<br>system for application identifiers | Managed by ISO/IECJTC 1/SC 31  |
| А                              | 0, Y                            | Data Identifiers as defined in ISO/<br>IEC 15418                                                   | Managed by ISO/IEC JTC 1/SC 31 |
| В                              | 0, Y                            | UPU                                                                                                | Managed by ISO/IEC JTC 1/SC 31 |
| С                              | 0, Y                            | IATA (International Air Transport<br>Association)                                                  | Managed by ISO/IEC JTC 1       |
| D                              | 0, Y                            | Reserved for Future Use                                                                            | Managed by ISO/IEC JTC 1/SC 17 |
| E                              | 0, Y                            | Reserved for Future Use                                                                            | Managed by ISO/IEC JTC 1/SC 17 |
| F                              | 0, Y                            | Reserved for Future Use                                                                            | Managed by ISO/IEC JTC 1/SC 17 |

#### Table 6 - AFI Examples

X = '1' to 'F', Y = '1' to 'F'

#### Data Storage Format Identifier (DSFID)

The DSFID indicates how data is structured in the tag memory. The respective commands can program and lock it. It is coded on 1 byte. It allows for instant knowledge on the logical organization of the data.

#### Electronic Article Surveillance (EAS)

EAS is a technology that is typically used to help prevent shoplifting in retail establishments. An EAS detection system detects active tags and sets off an alarm.

EAS status is 1-bit data (LSB side), which is stored in the system area of a tag. The initial value is 1. EAS bit 1 means goods-monitoring status, and EAS bit 0 means that goods-monitoring status is cleared.

#### Smart Label Integrated Circuit (SLI)

SLI tags use an EEPROM (electrically erasable programmable read-only memory) to store data. The 1024-bit EEPROM memory is divided into 32 blocks. Each block consists of 4 bytes (1 block = 32 bits). Bit 0 in each byte represents the least significant bit (LSB) and bit 7 the most significant bit (MSB), respectively.

#### Table 7 - SLI Tags

| Block | Byte O          | Byte 1 | Byte 2 | Byte 3 | Description                      |
|-------|-----------------|--------|--------|--------|----------------------------------|
| -4    | UIDO            | UID1   | UID2   | UID3   | Unique identifier (lower bytes)  |
| -3    | UID4            | UID5   | UID6   | UID7   | Unique identifier (higher bytes) |
| -2    | Internally used | EAS    | AFI    | DSFID  | EAS, AFI, DSFID                  |
| -1    | 00              | 00     | 00     | 00     | Write access conditions          |
| 0     |                 |        |        |        |                                  |
| 1     |                 |        |        |        | 7                                |
| 2     |                 |        |        |        |                                  |
| :     |                 |        |        |        |                                  |
| :     |                 |        |        |        | User Data                        |
| :     |                 |        |        |        |                                  |
| 22    |                 |        |        |        |                                  |
| 23    |                 |        |        |        | 7                                |
| 27    |                 |        |        |        | 1                                |

### SLI

#### **EAS Function**

The LSB of Byte 1 in Block -2 holds the EAS bit (Electronic Article Surveillance mode active - the label responds to an EAS command)

#### Table 8 - EAS

| Block -2, Byte 1                          |   |   |   |   |   |   |     |
|-------------------------------------------|---|---|---|---|---|---|-----|
| MSB I I I I I I I I I I I I I I I I I I I |   |   |   |   |   |   | LSB |
| Х                                         | Х | Х | Х | Х | Х | Х | е   |

EAS: e = 1(EAS enabled) e = 0 (EAS disabled)

| IMPORTANT | Only change the EAS Configuration in a secure environment. The label must not be moved out of the communication field of the antenna |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
|           | during writing. We recommend putting the label close to the antenna<br>and not to remove it during the operation.                    |

#### Application Family Identifier

The ICODE system offers the feature to use an AFI at the inventory command and the two custom commands inventory read and fast inventory read (this feature allows, for example, the creation of label families).

This 8-bit value is at Byte 2 in Block -2 as shown in <u>Table 9</u> and is only evaluated if the AFI flag is set in the reader command.

#### Table 9 - AFI

# Block -2, Byte 2 MSB LSB X X X X X X

#### Data Storage Format Identifier

The Data Storage Format Identifier (DSFID) is at Byte 3 in Block -2.

#### Table 10 - DSFID

| Block -2, Byt | e 3 |   |   |   |   |   |     |
|---------------|-----|---|---|---|---|---|-----|
| MSB           |     |   |   |   |   |   | LSB |
| Х             | Х   | Х | Х | Х | Х | Х | Х   |

Write Access Conditions

The Write Access Condition bits in Block -1 determine the write access conditions for each of the 28 user blocks and the special data block. These bits can be set only to 1 with a lock command (and never be changed back to 0), that is, already write-protected blocks can never be written to from this moment on.

In Block -2, each byte can be individually locked.

#### **Table 11 - Write Access**

Diack 1

| Byte O E                            |   |   |   |   |        |        |        |       | Byte 1 |    |   |   |   |   |   |     |
|-------------------------------------|---|---|---|---|--------|--------|--------|-------|--------|----|---|---|---|---|---|-----|
| MSB LSB                             |   |   |   |   |        |        |        |       | MSB    |    |   |   |   |   |   | LSE |
| Condition                           | 0 | 0 | 0 | 0 | 0      | 0      | 0      | 0     | 0      | 0  | 0 | 0 | 0 | 0 | 0 | 0   |
| Write Access<br>for Block<br>Number | 3 | 2 | 1 | 0 | -2 (3) | -2 (2) | -2 (1) | -2(0) | 11     | 10 | 9 | 8 | 7 | 6 | 5 | 4   |

| Byte 2                              |    |    |    |    |    |    |    | Byte 3 |     |    |    |    |    |    |    |     |
|-------------------------------------|----|----|----|----|----|----|----|--------|-----|----|----|----|----|----|----|-----|
| MSB LSB                             |    |    |    |    |    |    |    | LSB    | MSB |    |    |    |    |    |    | LSB |
| Condition                           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Write Access<br>for Block<br>Number | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12     | 27  | 26 | 25 | 24 | 23 | 22 | 21 | 20  |

| Block -1                            |    |    |    |    |    |    |    |     |        |    |    |    |    |    |    |     |
|-------------------------------------|----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|-----|
| Byte 2                              |    |    |    |    |    |    |    |     | Byte 3 |    |    |    |    |    |    |     |
| MSB LSB                             |    |    |    |    |    |    |    | LSB | MSB    |    |    |    |    |    |    | LSB |
| Condition                           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| Write Access<br>for Block<br>Number | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12  | 27     | 26 | 25 | 24 | 23 | 22 | 21 | 20  |

**IMPORTANT** Only change the Write Access conditions in a secure environment. The label must not be moved out of the communication field of the antenna during writing. We recommend putting the label close to the antenna and not to remove it during operation.

### Smart Label IC - Secure (SLI-S)

The 2048-bit EEPROM memory is divided into 64 blocks. A block is the smallest access unit. Each block consists of 4 bytes (1 block = 32 bits). Four blocks are summed up to one page for password protection. Bit 0 in each byte represents the least significant bit (LSB) and bit 7 the most significant bit (MSB), respectively.

The memory is divided into two parts:

• Configuration Area

This memory area stores all required information, such as UID, EPC data, write protection, access control information, passwords. Direct access to this memory area is not possible.

• User Memory

This memory area stores user data. Direct read/write access to this part of the memory is possible depending on the related security and write protection conditions.

Table 12 on page 22 shows the memory organization of an SLI-S tag.

| Table 12 - SLI-S Memory Organi | ization |
|--------------------------------|---------|
|--------------------------------|---------|

| Page | Block | Byte O | Byte 1 | Byte 2 | Byte 3 | Description                                                |
|------|-------|--------|--------|--------|--------|------------------------------------------------------------|
| -6   | -24   |        |        |        |        |                                                            |
|      | -23   |        |        |        |        |                                                            |
|      | -22   |        |        |        |        |                                                            |
|      | -21   |        |        |        |        | Configuration area for internal use                        |
| :    | :     | :      | :      | :      | :      |                                                            |
| :    | :     | :      | :      | :      | :      |                                                            |
| :    | :     | :      | ••     | :      | :      |                                                            |
| :    | :     | :      | :      | :      | :      |                                                            |
| -1   | -4    |        |        |        |        |                                                            |
|      | -3    |        |        |        |        |                                                            |
|      | -2    |        |        |        |        |                                                            |
|      | -1    |        |        |        |        |                                                            |
| 0    | 0     |        |        |        |        |                                                            |
|      | 1     |        |        |        |        |                                                            |
|      | 2     |        |        |        |        |                                                            |
|      | 3     |        |        |        |        | User Memory                                                |
| :    | :     | :      | :      | :      | :      | 10 pages<br>4 blocks per page                              |
| :    | :     | :      |        | :      | :      | 4 blocks per page<br>4 bytes per block<br>Total: 160 bytes |
| 9    | 36    |        |        |        |        | Total: 160 bytes                                           |
|      | 37    |        |        |        |        |                                                            |
|      | 38    |        |        |        |        |                                                            |
|      | 39    |        |        |        |        |                                                            |

### Smart Label IC - Lean (SLI-L)

The SLI-L is used in applications that require smaller memory size. The 512 bit EEPROM memory is divided into 16 blocks. A block is the smallest access unit. Each block consists of 4 bytes (1 block = 32 bits). Four blocks are summed up to one page. Bit 0 in each byte represents the least significant bit (LSB) and bit 7 the most significant bit (MSB), respectively.

The memory is divided into two parts:

Configuration Area

This memory area stores all required information, such as UID, write protection, passwords. Direct access to this memory area is not possible.

User Memory

This memory area stores user data. Direct read/write access to this part of the memory is possible depending on the related write protection conditions.

Table 13 shows the memory organization of an SLI-L tag.

Table 13 - SLI-L Memory Organization

| Description                            | Byte 3 | Byte 2 | Byte 1 | Byte O | Block | Page |
|----------------------------------------|--------|--------|--------|--------|-------|------|
|                                        |        |        |        |        | -8    | -2   |
| Configuration and for internal wa      |        |        |        |        | -7    |      |
| Configuration area for internal use    |        |        |        |        | -6    |      |
|                                        |        |        |        |        | -5    |      |
|                                        |        |        |        |        | -4    | -1   |
|                                        |        |        |        |        | -3    |      |
|                                        |        |        |        |        | -2    |      |
|                                        |        |        |        |        | -1    |      |
|                                        |        |        |        |        | 0     | 0    |
|                                        |        |        |        |        | 1     |      |
| User Memory                            |        |        |        |        | 2     |      |
| 2 pages                                |        |        |        |        | 3     |      |
| 4 blocks per page<br>4 bytes per block |        |        |        |        | 4     |      |
| Total: 32 bytes                        |        |        |        |        | 5     |      |
|                                        |        |        |        |        | 6     |      |
|                                        |        |        |        |        | 7     |      |

### Ferroelectric Random Access Memory (FRAM)

FRAM is a nonvolatile memory that uses ferroelectric film as a capacitor for storing data. FRAM offers high-speed access, high endurance in write mode, low power consumption, non-volatility, and excellent tamper resistance. The FRAM tags have 2000 bytes for use as user area and 48 bytes for use as system area.

The FRAM tag memory areas consist of a total of 256 blocks (250 blocks of user area and 6 blocks of system area). Each block can store 64 bits (8 bytes) of data.

The block is the unit that is used for the writing and reading of FRAM data. The memory configuration of FRAM is shown in <u>Table 14 on page 23</u>.

| Table 14 - FRAM Memory Configuration |  |
|--------------------------------------|--|
|--------------------------------------|--|

| Area                      | Block No.                          | Details                             | Data Read | Data Write |
|---------------------------|------------------------------------|-------------------------------------|-----------|------------|
| User area<br>(2000 bytes) | 00 <sub>H</sub> to F9 <sub>H</sub> | User area                           | Yes       | Yes        |
|                           | FA <sub>H</sub>                    | UUID (64 bits)                      | Yes       | No         |
| System area<br>(48 bytes) | FB <sub>H</sub>                    | AFI, DSFID, EAS,<br>security status | Yes       | Limited    |
|                           | FC <sub>H</sub> to FF <sub>H</sub> | Block security status               | Yes       | No         |

Blocks  $00_{\text{H}}$ ...F9<sub>H</sub> are user area, which is defined as an area that can be accessed when the corresponding block address is specified. While Blocks FA<sub>H</sub>...FF<sub>H</sub> are system area, which is defined as an area that can be accessed only with a specific command.

The system area consists of six blocks and contains UUID, AFI, DSFID, EAS bits, and security status (can write or cannot write) data for individual block. UID is fixed and cannot be updated. AFI, DSFID, and EAS bits are written at the factory, and can be updated and locked (disable to write) with commands (only EAS bit cannot be locked).

As shown in <u>Table 14</u>, FA<sub>H</sub> holds the UUID, and FC<sub>H</sub>...FF<sub>H</sub> hold the security status information on individual user areas. The configuration of FB<sub>H</sub> ...FF<sub>H</sub> blocks is shown in <u>Table</u> and <u>Table 16</u>. FB<sub>H</sub> block is used for EAS status, AFI and DSFID data, the security status data of AFI and DSFID. Blocks FC<sub>H</sub>...FF<sub>H</sub> contain security status data.

#### Table 15 - Structure of FB<sub>H</sub>

| MSB    |       |                 |                |    |                      |    |           |       |   |     | LSB |
|--------|-------|-----------------|----------------|----|----------------------|----|-----------|-------|---|-----|-----|
| 64     | 57    | 56              | 33             | 32 | 25                   | 24 | 17        | 16    | 9 | 8   | 1   |
| EAS St | tatus | Reser<br>future | ved for<br>use |    | DSFID Lock<br>Status |    | ck Status | DSFID |   | AFI |     |

#### Table 16 - Structure of FC<sub>H</sub> to FF<sub>H</sub>

|                 | MSB     |            |            |         |    |    |    |    |    |    | LSB |
|-----------------|---------|------------|------------|---------|----|----|----|----|----|----|-----|
| FC <sub>H</sub> | 3F      | 3E         | 3D         | 3C      | 3B | 3A | 39 | 03 | 02 | 01 | 00  |
| FD <sub>H</sub> | 7F      | 7E         | 7D         | 7C      | 7B | 7A | 79 | 43 | 42 | 41 | 40  |
| Fe <sub>h</sub> | BF      | BE         | BD         | BC      | BB | BA | B9 | 83 | 82 | 81 | 80  |
| FF <sub>H</sub> | Reserve | ed for fut | ure use (l | 6 bits) | •  | F9 | C3 | C2 | C1 | CO |     |

The security status of the user area is stored in the block security status bit in system area blocks of  $FC_{H}$ ... $FF_{H}$  per bit in each block. A user area is unlocked when the corresponding block security status bit is 0; it is locked (disable to write state) when the corresponding block security status bit is 1.

EAS bit is one bit, and it is used for setting EAS status. It is possible to read/write data of two blocks at one time in the user area (if Read Multiple Blocks Unlimited command is used, up to 256 blocks can be accessed at one time).

### **Product Selection**

<u>Table 17...Table 22 on page 26</u> show the catalog numbers for the components in the Bulletin 56RF product family.

#### **Main Components**

#### Table 17 - EtherNet/IP Interface Blocks

| Transceiver Ports | Input Ports | Output Ports | Cat. No.       |
|-------------------|-------------|--------------|----------------|
| 1                 | 1           | 1            | 56RF-IN-IPS12  |
| 2                 | 1           | 1            | 56RF-IN-IPD22  |
| 2                 | 2           | 0            | 56RF-IN-IPD22A |

#### **Table 18 - Transceivers**

| Dimensions [mm (in.)]         Recommended Sensing<br>Distance [mm (in.)] <sup>(1)</sup> |           | Sensing Distance, Max<br>[mm (in.)] <sup>(1)</sup> | Cat. No.     |
|-----------------------------------------------------------------------------------------|-----------|----------------------------------------------------|--------------|
| Rectangular<br>[80 x 90 (3.14 x 3.54)]                                                  | 100 (3.9) | 168 (6.6)                                          | 56RF-TR-8090 |
| Square<br>[40 x 40 (1.57 x 1.57)]                                                       | 50 (2)    | 85 (3.3)                                           | 56RF-TR-4040 |
| Cylindrical M30                                                                         | 35 (1.4)  | 60 (2.4)                                           | 56RF-TR-M30  |
| Cylindrical M18                                                                         | 18 (0.7)  | 30 (1.2)                                           | 56RF-TR-M18  |

(1) Range reference for a 50 mm (2 in.) diameter tag.

| Outline                         | Туре  | Total Memory<br>Size [B] | User Memory<br>Size [B] | Dimensions<br>[mm (in.)] | Cat. No.               |              |
|---------------------------------|-------|--------------------------|-------------------------|--------------------------|------------------------|--------------|
|                                 |       |                          |                         | 16 (0.6)                 | 56RF-TG-16             |              |
|                                 | SLI   | 128                      | 112                     | 20 (0.8)                 | 56RF-TG-20             |              |
| Disc                            | SLI   | 120                      | IIZ                     | 30 (1.2)                 | 56RF-TG-30             |              |
| DISC                            |       |                          |                         | 50 (2)                   | 56RF-TG-50             |              |
|                                 | SLI-S | 64                       | 32                      | 16 (0.6)                 | 56RF-TG-16-64B         |              |
|                                 | SLI-L | 256                      | 160                     | 10 (0.4)                 | 56RF-TG-10-256B        |              |
| Disc – High Impact<br>Resistant | SLI   | 128                      | 112                     | 35 (1.4)                 | 56RF-TG-35HIR          |              |
| Disc - Mount on Metal           | SLI   | 128                      | 112                     | 20 (0.8)                 | 56RF-TG-20M0M          |              |
|                                 | SLI   | 120                      |                         | 50 (2)                   | 56RF-TG-50M0M          |              |
|                                 |       | 2048                     | 2 kB                    | 20 (0.8)                 | 56RF-TG-20-2KB         |              |
| Disc – FRAM                     | FRAM  |                          |                         | 30 (1.2)                 | 56RF-TG-30-2KB         |              |
|                                 |       |                          |                         | 50 (2)                   | 56RF-TG-50-2KB         |              |
| Label                           | SLI   | 100                      | 128                     |                          | 54 x 86<br>(2.1 x 3.4) | 56RF-TG-5486 |
| Labei                           | JLI   | 120                      | 112                     | 50 x 50<br>(2 x 2)       | 56RF-TG-5050           |              |
| Smart Cards                     | SLI   | 128                      | 112                     | 54 x 86<br>(2.1 x 3.4)   | 56RF-TG-5486SC         |              |
| Square – High<br>Temperature    | SLI   | 128                      |                         | 50 x 50<br>(2 x 2)       | 56RF-TG-50HT           |              |

| Table 19 | - Tags |
|----------|--------|
|----------|--------|

### Accessories

#### **Table 20 - Transceiver**

| Style                        | Connector Type                                  | No. of Pins | Shield   | Wire Size<br>[mm² (AWG)] | Cat. No.                              |
|------------------------------|-------------------------------------------------|-------------|----------|--------------------------|---------------------------------------|
|                              | Concave straight to<br>convex straight          |             |          |                          | 889D-F5FCDM-Jx <sup>(1)</sup>         |
| DC Micro (M12)<br>Patchcords | Concave straight to<br>convex right angle       | 4           | Shielded | 0.34 (22)                | 889D-F5FCDE-Jx <sup>(1)</sup>         |
|                              | Concave right angle<br>to convex straight       |             |          |                          | 889D-R5FCDM-J <i>x</i> <sup>(1)</sup> |
|                              | Concave right angle<br>to convex right<br>angle |             |          |                          | 889D-R5FCDE-Jx <sup>(1)</sup>         |
| DC Micro (M12)               | Concave straight                                | - 4         | Shielded | 0.34 (22)                | 889D-F5FC-Jx <sup>(2)</sup>           |
|                              | Concave right angle                             |             |          |                          | 889D-R5FC-Jx <sup>(2)</sup>           |
| Patchcords                   | Convex straight                                 |             |          |                          | 889D-M5FC-Jx <sup>(2)</sup>           |
|                              | Convex right angle                              |             |          |                          | 889D-E5FC-Jx <sup>(2)</sup>           |
|                              | Concave straight                                |             |          |                          | 871A-TS5-D1                           |
| M12 Terminal                 | Concave right angle                             | 4           | _        | 0.340.75                 | 871A-TR5-D1                           |
| Chambers                     | Convex straight                                 | 4           | _        | (2218)                   | 871A-TS5-DM1                          |
|                              | Convex right angle                              |             |          | 0 ( )) 10 (10 [ 7(       | 871A-TR5-DM1                          |

Replace x with OM3 (0.3 m [1 ft]), 1 (1 m [3.3 ft]), 2 (2 m [6.6 ft]), 5 (5 m [16.4]), or 10 (10 m [32.8 ft]).
 Replace x with 2 (2 m [6.6 ft]), 5 (5 m [16.4]), or 10 (10 m [32.8 ft]).

| Style                        | Connector Type                                  | No. of Pins | Shield     | Wire Size<br>[mm² (AWG)] | Cat. No.                     |
|------------------------------|-------------------------------------------------|-------------|------------|--------------------------|------------------------------|
|                              | Concave straight to<br>convex straight          | 4           | Unshielded | 0.34 (22)                | 889D-F4ACDM-x <sup>(1)</sup> |
| DC Micro (M12)<br>Patchcords | Concave straight to<br>convex right angle       |             |            |                          | 889D-F4ACDE-x <sup>(1)</sup> |
|                              | Concave right angle<br>to convex straight       |             |            |                          | 889D-R4ACDM-x <sup>(1)</sup> |
|                              | Concave right angle<br>to convex right<br>angle |             |            |                          | 889D-R4ACDE-x <sup>(1)</sup> |
| DC Micro (M12)<br>Patchcords | Concave straight                                | 4           |            | 0.34 (22)                | 889D-F4AC-x <sup>(2)</sup>   |
|                              | Concave right angle                             |             | Unshielded |                          | 889D-R4AC-x <sup>(2)</sup>   |
|                              | Convex straight                                 |             |            |                          | 889D-M4AC-x <sup>(2)</sup>   |
|                              | Convex right angle                              |             |            |                          | 889D-E4AC-x <sup>(2)</sup>   |
|                              | Concave straight                                |             |            |                          | 871A-TS4-D                   |
| M12 Terminal                 | Concave right angle                             | 4           |            | 0.34 (22)                | 871A-TR4-D                   |
| Chambers                     | Convex straight                                 | 4           | _          | 0.34 (22)                | 871A-TS4-DM                  |
|                              | Convex right angle                              |             |            |                          | 871A-TR4-DM                  |

#### Table 21 - Auxiliary Power

Replace x with OM3 (0.3 m [1 ft]), 1 (1 m [3.3 ft]), 2 (2 m [6.6 ft]), 5 (5 m [16.4]), or 10 (10 m [32.8 ft]).
 Replace x with 2 (2 m [6.6 ft]), 5 (5 m [16.4]), or 10 (10 m [32.8 ft]).

#### Table 22 - EtherNet/IP

| Style                    | Connector Type                                 | No. of Pins | Shield     | Wire Size<br>[mm² (AWG)] | Cat. No.                              |          |           |                                       |
|--------------------------|------------------------------------------------|-------------|------------|--------------------------|---------------------------------------|----------|-----------|---------------------------------------|
| M12 D Code<br>Patchcords | Convex straight to<br>convex straight          | 4           |            |                          | 1585D-M4TBDM-x <sup>(1)</sup>         |          |           |                                       |
|                          | Convex straight to<br>convex right angle       |             | Unshielded | 0.25 (24)                | 1585D-M4TBDE-x <sup>(1)</sup>         |          |           |                                       |
|                          | Convex right angle<br>to convex right<br>angle |             |            |                          | 1585D-E4TBDE-x <sup>(1)</sup>         |          |           |                                       |
|                          | Convex straight to<br>convex straight          |             |            |                          | 1585D-M4UBDM- <i>x</i> <sup>(1)</sup> |          |           |                                       |
| M12 D Code<br>Patchcords | Convex straight to<br>convex right angle       | 4           | 4          | 4                        | 4 SI                                  | Shielded | 0.14 (26) | 1585D-M4UBDE- <i>x</i> <sup>(1)</sup> |
|                          | Convex right angle<br>to convex right<br>angle |             |            |                          | 1585D-E4UBDE-x <sup>(1)</sup>         |          |           |                                       |

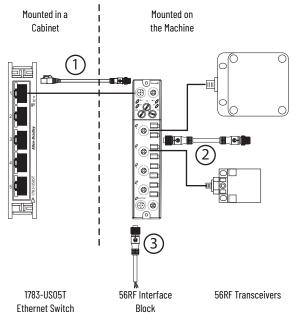
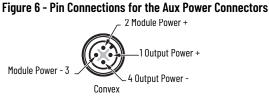
(1) Replace x with OM3 (0.3 m [1 ft]), 1 (1 m [3.3 ft]), 2 (2 m [6.6 ft]), 5 (5 m [16.4]), 10 (10 m [32.8 ft]), or 15 (15 m [49.2 ft]). Increments of 5 m (16.4 ft) up to 75 m (246.1 ft) are also available.

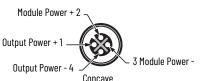
## **Electrical Installation**

### **Cable Overview**

The Ethernet switch must be mounted inside a control panel. The Bulletin 56RF interface block and Bulletin 56RF transceivers can be mounted on the machine.

#### Figure 5 - Transceiver Mounting



Figure 5 shows the three types of cables that are needed.

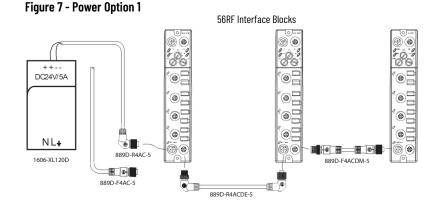
- 1. An Ethernet cable, RJ45 to M12-QD patchcord.
- 2. A 5-pin M12 to 5-pin M12 patchcord. The cable includes a shield that connects to the functional earth point on the interface block.
- 3. A 4-pin concave micro QD cordset that connects power to the interface block.

**Auxiliary Power Connection** Attach a micro-style 4-pin concave to the micro-style 4-pin convex receptacle as shown in Figure 6 on page 28. The concave side is used to daisy chain the power to another device. The power connection is limited to 4 A. When the daisy chain approach is used, the total power that is consumed by each block determines the maximum number of interface blocks that can be connected.

| IMPORTANT | Power must be connected to the convex connector first. Do not connect<br>power to the concave connector and leave the convex connector<br>exposed. The pins in the convex connector have 24V DC potential for<br>short circuit. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                 |

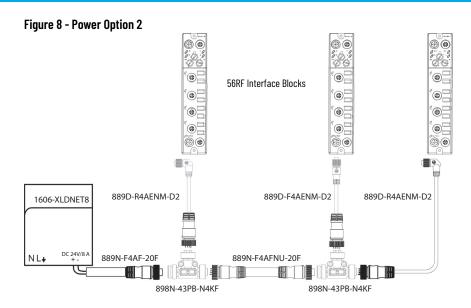





The power for the output port is separate from the power to the remaining portions of the interface block. This configuration allows the output device to be turned off, while maintaining power to the transceivers, the input port, and the EtherNet/IP<sup>™</sup> connection. When the output is connected to the safety-related portion of the machine control system, an actuator can be turned off, while diagnostic information is still available to the machine control system.

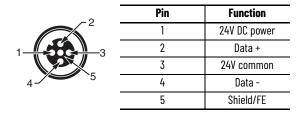
### **Power Connection Options**

Each interface block is limited to 4 A total consumption.


#### **Example 1: Daisy Chain the Power Connections**

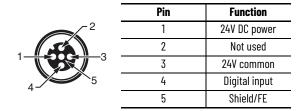
The example in <u>Figure 7</u> allows for a simple and easy way to distribute power to the RFID system. This approach is preferred when the total current of the RFID system is less than 4 A.




#### Example 2: System Needs More Than 4 A

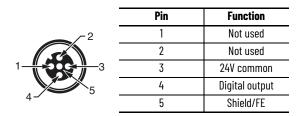
If multiple blocks are required on a machine and the current consumption exceeds 4 A, then a combination of mini-style and micro-style connections can be used to distribute the power. In the example shown in Figure 8 on page 29, mini-style cordsets, patchcords, and tees are used to configure the power. A mini-to-micro style patchcord connects each 56RF interface block with the tee. In this example, the power supply is a catalog number 1606-XLDNET8, which can supply up to 8 A to the RFID system.




### **Transceiver Connection**

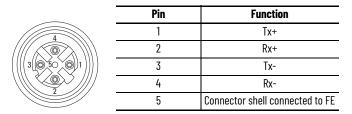
The following shows the M12 QD concave connector for the transceivers. Pin 5 is the cable shield connection and is connected only at the block to functional earth (FE).




### **Digital Input Connection**

The following shows the concave M12 QD input connector.




### **Digital Output Connection**

The following shows the concave M12 QD output connector.



### **EtherNet/IP Connection**

The following shows the D-Code M12 connector on the interface block.

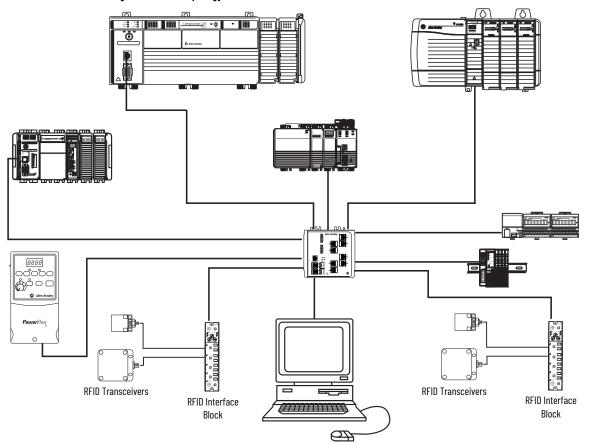


Use the catalog number 1585D-M4DC-H (polyamide small body unshielded) or catalog number 1585D-M4DC-SH (zinc die-cast large body shielded) mating connectors for the D-Code M12 concave network connector.

Use two twisted-pair Cat 5E UTP or STP cables.

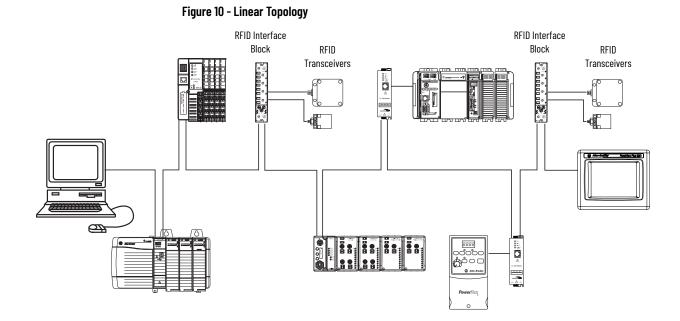
| D-Code M12 Pin | Wire Color   | Signal | 8-Way Modular RJ45 Pin |
|----------------|--------------|--------|------------------------|
| 1              | White-Orange | Tx+    | 1                      |
| 2              | White-Green  | Rx+    | 3                      |
| 3              | Orange       | Tx-    | 2                      |
| 4              | Green        | Rx-    | 6                      |

The 56RF interface block encoders can be connected in the following network topologies:


- Star Topology on page 31
- Linear Topology on page 31
- Device Level Ring (DLR) Topology on page 32

## EtherNet/IP Addressing

### **Star Topology**


The star topology consists of a number of devices that connect to the central switch. When this topology is used, only one Ethernet connection can be made to the Bulletin 56RF interface block – this connection is made to the Link 1 connector. The Link 2 connection must remain unused.

#### Figure 9 - Star Topology



### **Linear Topology**

The linear topology uses the embedded switching capability to form a daisy-chain style network that has a beginning and an end. Linear topology simplifies installation and reduces wiring and installation costs, but a break in the network disconnects all devices downstream from the break. When this topology is used, both Ethernet connections are used. The network connection to Link 1 or Link 2 does not matter.

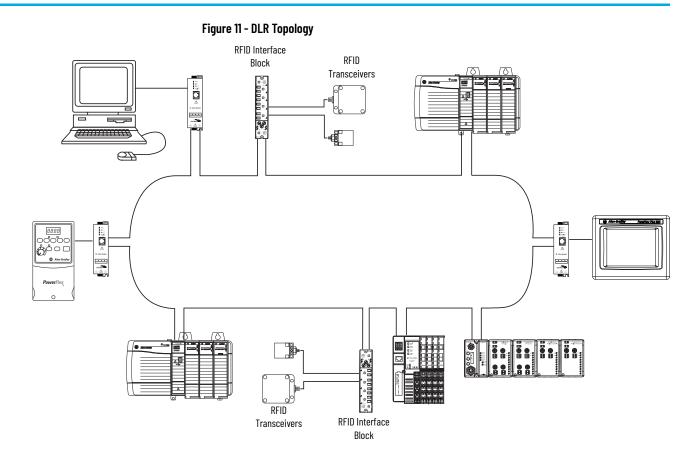


### Device Level Ring (DLR) Topology

A DLR network is a single-fault tolerant ring network that is intended for the interconnection of automation devices. DLR topology is advantageous as it can tolerate a break in the network. If a break is detected, the signals are sent out in both directions. When this topology is used, both Ethernet connections are used. The network connection to Link 1 or Link 2 does not matter.

We recommend that you use no more than 50 nodes on one DLR, or linear, network. If your application requires more than 50 nodes, we recommend that you segment the nodes into separate, but linked, DLR networks.

Smaller networks provide the following benefits:


- There is better management of traffic on the network.
- The networks are easier to maintain.

•

• There is a lower likelihood of multiple faults.

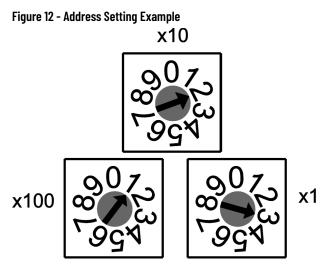
Additionally, on a DLR network with more than 50 nodes, network recovery times from faults are higher. The maximum cable length between devices cannot exceed 100 m (328 ft).

For more information on DLR network design and configuration, see publication ENET-APOO7.



### Setting the Network Address

Before using the 56RF interface block in an EtherNet/IP<sup>™</sup> network, configure it with an IP address, subnet mask, and optional Gateway address. This chapter describes these configuration requirements and the procedures for providing them. The address can be set in one of three ways:


- Use the Network Address switches.
- Use the BootP/DHCP utility (version 2.3 or greater), which ships with RSLogix 5000<sup>®</sup> software.
- Use RSLinx® software.

IP network addresses have a format of xxx.xxx.xxx. You must know what values are being used for the network. If your network has the fundamental 192.168.1.xxx scheme, then you can simply use the three network address switches. If your network is something other than 192.168.1.xxx, you must use advanced tools, such as the BootP/DHCPserver, to assign an IP address. After the address is set, you can use RSLinx software to change the address.

**Fundamental IP Addresses: 192.168.1.xxx**, then you can adjust the network address switches to set the IP address. Remove the covers of the three network address screws. Use a screwdriver to rotate the switches. Align the small notch on the switch with the number setting you wish to use. Valid settings range from 001...254.

When the switches are set to a valid number, the IP address of the interface block is 192.168.1.xxx (where xxx represents the number set on the switches). Cycle the power and the valid setting becomes effective immediately.

Figure 12 on page 34 shows an address setting of 192.168.1.123.



The subnet mask of the interface block is automatically set to 255.255.255.0 and the gateway address is set to 0.0.0.0. When the interface block uses the network address set on the switches, the interface block does not have an assigned host name or use a Domain Name Server (DNS).

### Advanced IP Addresses

step 1...step 6 show how to change the IP address from the fundamental 192.168.1.xxx to an advanced address. This procedure assumes that the 56RF interface block was already configured with an IP address using the network address switches. The following examples show the change process using specific addresses. You are not limited to these addresses; you can select any address that meets their needs. In the following example, we change from 192.168.1.115 to 192.168.2.115.

1. Set address switches to 888 and cycle the power.

On the 56RF interface block, the address switches had previously been to 115. Set the address switch settings to 888. Cycle the power and wait until the MOD indicator is flashing red. The MOD indicator flashes red once, green once, then steady red for a short while, then flashes green once, and finally flashes red continuously (about once each second). This process takes about 10 seconds after power is restored. The interface block is reset to its factory setting.

2. Set the address switches to 999 and cycle the power.

On the 56RF interface block, set the address switch settings to 999. Cycle the power and wait until the MOD indicator is steady green. The MOD indicator flashes red once, green once, steady red for a short while and finally turns steady green. This process takes about 10 seconds after power is restored. The interface block IP address is reset.

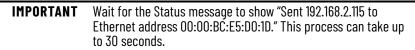
- 3. Use BootP/DHCP Server to set new valid address.
  - a. From the Start menu, select Programs > Rockwell Software > BOOTP-DHCP Server > BOOTP-DHCP Server.

| <b>1</b>     | Programs         | , 🛅      | Altiris 🕨           |                                |                       |
|--------------|------------------|----------|---------------------|--------------------------------|-----------------------|
| ala          |                  |          | Rockwell Software 🔸 | RSLinx                         | +                     |
| Professional | Documents        | • 🏉      | Internet Explorer   | BOOTP-DHCP Server              | BOOTP-DHCR Server     |
| 8            |                  |          | ×                   | RSLogix 5000 Enterprise Series | • * <sup>%</sup>      |
| 3 🕍          | Settings         | <b>T</b> |                     | *                              |                       |
| 2 🔎          | Search           | •        |                     |                                |                       |
|              |                  |          |                     |                                |                       |
| × 🕐          | Help and Support |          |                     |                                |                       |
|              | Run              |          |                     |                                |                       |
| X swobul     | Run              |          |                     |                                |                       |
|              |                  |          |                     |                                |                       |
| ≤ 0          | Shut Down        |          |                     |                                |                       |
| Start        | 🔞 🦉 🗀 🔴 🖉 避 🗉 🤆  | Ai       | 📴 🛄 🗶 🐨             | Document1 - Mic                | 56RFID Systems 🔏 Home |

b. When power is restored, the interface block repeatedly broadcasts its MAC ID and requests an IP address. The BOOTP-DHCP server displays the MAC ID in the Request History panel.

| Ethernet Address (MAC)<br>00008C:E5D0:10<br>00:008C:E5D0:10<br>00:008C:E5D0:10<br>00:008C:E5D0:10<br>00:008C:E5D0:10<br>00:008C:E5D0:10 | IPAddess Hostname<br>The Interface Block repe<br>broadcasts its MACID,<br>requesting an IP address |        |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|
| ( (                                                                                                                                     |                                                                                                    |        |
| le BOOTP Enable DHCP I<br>Type IP Address                                                                                               | Disable BOOTP/DHCP Hostname Description                                                            | [      |
|                                                                                                                                         |                                                                                                    |        |
|                                                                                                                                         |                                                                                                    | Entrie |
|                                                                                                                                         | Type   IP Address                                                                                  |        |

c. Double-click one of the Ethernet addresses (MAC) of the device. The New Entry dialog appears, which shows the Ethernet address (MAC) of the device.


| New Entry               | <u>×</u>               |
|-------------------------|------------------------|
|                         |                        |
| Ethernet Address (MAC): | 00:00:BC:E5:D0:1D      |
| IP Address:             | 192.168.2.115          |
| Hostname:               | RFID_1                 |
| Description:            | 56RFID Interface Block |
|                         | OK Cancel              |

d. Type in the IP address, host name, and description and click OK. The host name and description are optional fields; they can be left blank.

The device is added to the Relation List, which displays the Ethernet address (MAC) and corresponding IP address, host name, and description.

When the address is assigned to the 56RF interface block, the Status message is updated and the IP address appears in the Request History window.

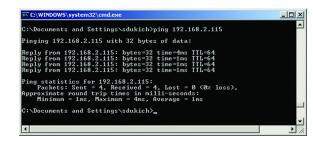
| 5          | BOOTP/DHCP !                                                                           | Server 2   | .3                             |               |               |               |         | _ 🗆 🗙    |
|------------|----------------------------------------------------------------------------------------|------------|--------------------------------|---------------|---------------|---------------|---------|----------|
| File       | Tools Help                                                                             |            |                                |               |               |               |         |          |
| FF         | equest History-                                                                        |            |                                |               |               |               |         |          |
|            | Clear History                                                                          | Add t      | o Relation List                |               |               |               |         |          |
|            | (hr:min:sec)                                                                           | Туре       | Ethernet Addr                  | ess (MAC)     | IP Address    | Hostname      |         | <b></b>  |
|            | 21:59:02                                                                               | DHCP       | 00:00:BC:E5:0                  |               | 192.168.2.115 | _RFID_1       | - 2     |          |
|            | 21:59:02<br>21:58:30                                                                   | DHCP       | 00:00:BC:E5:0<br>00:00:BC:E5:0 |               |               |               | -       |          |
|            | 21:58:14                                                                               | DHCP       | 00:00:BC:E5:0                  | D0:1D         |               |               |         | -        |
|            | 21:58:06<br>21:58:02                                                                   | DHCP       | 00:00:8C:E5:0<br>00:00:8C:E5:0 |               |               |               |         |          |
|            | 21:56:58                                                                               | DHCP       | 00:00:BC:E5:0                  |               |               |               |         | -1       |
|            | ~ ~ ~ ~                                                                                | 5110D      |                                |               |               |               |         |          |
| <b>⊢</b> F | Relation List                                                                          |            |                                |               |               |               |         |          |
|            | New         Delete         Enable BOOTP         Enable DHCP         Disable BOOTP/DHCP |            |                                |               |               |               |         |          |
|            | Ethernet Addre                                                                         | ss (MAC)   | Туре                           | IP Address    | Hostname      | Description   |         |          |
|            | 00:00:BC:E5:DI                                                                         | 0:1D       | DHCP                           | 192.168.2.11  | 5 _RFID_1     | 56RF Interfac | e Block |          |
|            |                                                                                        |            |                                |               |               |               |         |          |
|            |                                                                                        |            |                                |               |               |               |         |          |
|            |                                                                                        |            |                                |               |               |               |         |          |
|            |                                                                                        |            |                                |               |               |               |         |          |
|            | tatus                                                                                  |            |                                |               |               |               |         | Entries  |
|            | ent 192 168 2 1                                                                        | 15 to Ethe | ernet address 00               | 00 BC E5 D0 1 | D - 1         |               |         | 1 of 256 |
|            |                                                                                        |            |                                |               | -             |               |         |          |



- 4. At this point, the IP addresses of other devices are changed.
- 5. Change the Network Adapter to 192.168.2.1.
  - a. Open the network connections of the host computer.
  - b. Highlight the Internet Protocol (TCP/IP) connection.
  - c. Click Properties. In the IP address field, set the IP address to 192.168.2.1. Click OK.
  - d. Click Close to close the Local Area Connection window (this window must be closed to apply the new address).

| eneral Advanced                                                                                                        | General<br>You can get IP settings assigned automatically if your network supports                         |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| BELKIN USB To Fast Ethernet Adapt Configure                                                                            | this capability. Otherwise, you need to ask your network administrator for<br>the appropriate IP settings. |
| This connection uses the following items:                                                                              | C Obtain an IP address automatically                                                                       |
| File and Printer Sharing for Microsoft Networks                                                                        | Use the following IP address:                                                                              |
| Pass Protocol (IEEE 802.1x) v3.4.9.0      Theremet Protocol (ICCP/IP)                                                  | IP address: 192 . 168 . 1 . 1                                                                              |
|                                                                                                                        | Subnet mask: 255 . 255 . 255 . 0                                                                           |
|                                                                                                                        | Default gateway:                                                                                           |
| Instal Uninstall Properties                                                                                            | -                                                                                                          |
| Description                                                                                                            | C Obtain DNS server address automatically                                                                  |
| Transmission Control Protocol/Internet Protocol. The default<br>wide area network protocol that provides communication | Use the following DNS server addresses:                                                                    |
| across diverse interconnected networks.                                                                                | Preferred DNS server:                                                                                      |
| Show icon in notification area when connected                                                                          | Alternate DNS server:                                                                                      |
| Notify me when this connection has limited or no connectivity                                                          |                                                                                                            |
|                                                                                                                        | Advanced                                                                                                   |

- 6. Disable DHCP.
  - a. Set the rotary switches to 0 0 0.


| BOOTP/DHCP                                   | Server 2.                    | 3                                                                |                |                   |                  | _                           |
|----------------------------------------------|------------------------------|------------------------------------------------------------------|----------------|-------------------|------------------|-----------------------------|
| File Tools Help                              |                              |                                                                  |                |                   |                  |                             |
| - Request History -                          |                              |                                                                  |                |                   |                  |                             |
| Clear History                                | Add to                       | Relation List                                                    |                |                   |                  |                             |
| (hr:min:sec)                                 | Туре                         | Ethernet Addr                                                    | ess (MAC)      | IP Address        | Hostname         | <b>A</b>                    |
| 21:59:02<br>21:59:02<br>21:58:30<br>21:58:14 | DHCP<br>DHCP<br>DHCP<br>DHCP | 00:00:BC:E5:0<br>00:00:BC:E5:0<br>00:00:BC:E5:0<br>00:00:BC:E5:0 | 00:1D<br>00:1D | 192.168.2.115     | _RFID_1          |                             |
| 21:58:06                                     | DHCP                         | 00:00:BC:E5:0                                                    |                |                   |                  |                             |
| 21:58:02<br>21:56:58                         | DHCP                         | 00:00:BC:E5:0                                                    | 00:1D          |                   |                  | <b>_</b>                    |
| Relation List                                | Enable                       | BOOTPEn                                                          |                | isable BOOTP/DHCP |                  |                             |
| Ethernet Addre                               |                              | Туре                                                             |                |                   |                  | n in memory at next power c |
| 00:00:BC:E5:DI                               | ):1D                         | DHCP                                                             | 192.168.2.11   | 15 _RFID_1        | 56RF Interface B | lock                        |
|                                              |                              |                                                                  |                |                   |                  |                             |
| Status                                       |                              |                                                                  |                |                   |                  | Entries                     |
| Sent 192.168.2.1                             | 15 to Ethe                   | rnet address 00                                                  | :00:BC:E5:D0:1 | D                 |                  | 1 of 256                    |

- b. To highlight the interface block, single-click it in the Relation List.
- c. Then, click Disable BOOTP/DHCP. This action instructs the 56RF interface block to retain the IP address at the next power cycle.

Wait for the Status message to show that the command was successfully sent. If not, repeat this step.

| (hr:min:sec)                                 | Туре                         | Ethernet Address (MAC)                                                           | IP Address                     | Hostname             |  |
|----------------------------------------------|------------------------------|----------------------------------------------------------------------------------|--------------------------------|----------------------|--|
| 22:02:20<br>21:59:02<br>21:59:02<br>21:59:30 | DHCP<br>DHCP<br>DHCP<br>DHCP | 00:00:8C:E5:D0:1D<br>00:00:8C:E5:D0:1D<br>00:00:8C:E5:D0:1D<br>00:00:8C:E5:D0:1D | 192.168.2.115                  | _RFID_1              |  |
| 21:58:14                                     | DHCP                         | 00:00:BC:E5:D0:1D                                                                |                                |                      |  |
| 21:58:06<br>21:58:02                         | DHCP                         | 00:00:8C:E5:D0:1D<br>00:00:8C:E5:D0:1D                                           |                                |                      |  |
| 21:58:02                                     | DHUP                         | 00:00:BC:E5:D0:1D                                                                |                                |                      |  |
| elation List<br>New Del<br>Ethernet Add      |                              | E BOOTP Enable DHCP                                                              | Disable BOOTP/DHCP<br>Hostname | Description          |  |
| 00:00:BC:E5                                  | :D0:1D                       | DHCP 192.168.2.1                                                                 | 15RFID_1                       | 56RF Interface Block |  |
| 00.00.00.00.20                               |                              |                                                                                  |                                |                      |  |

- d. Click File > Save As to save the relationship, if desired.
- e. Cycle the power to the 56RF interface block. You no longer see the 56RF interface block in the Request History panel.
- f. From a DoS prompt, you can ping the new address. The response must be four packets sent, four packets received, and zero lost.



# Change IP Address from One Advanced Address to Another Advanced Address

The easiest way to change the IP address from one non-simple address to another non-simple address is to use RSLinx. In this case, the three network switches on the 56RF interface block are set to 999, and the address has been previously set using the BootP/DHCP server. The following example shows how to change the IP address from 192.168.2.115 to 192.168.3.115.

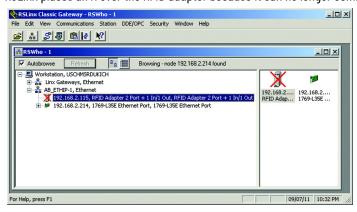
| 🗞 R   | 5Linx Classic Gateway - RSWho - 1                                                                                                                             |                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| File  | Edit View Communications Station DDE/OPC Security Window Help                                                                                                 |                                          |
| Ê     | 30 BIV R                                                                                                                                                      |                                          |
| 1     | 💑 R5Who - 1                                                                                                                                                   |                                          |
| 1     | Autobrowse Refresh 2.2 III Browsing - node 192.168.2.115                                                                                                      | found                                    |
| 2     | 문                                                                                                                                                             |                                          |
| -     | AB_ETHIP-1, Ethernet 3<br>1192.163.2.115, RFID Adapter 2 Port + 1 In/1 Out, RFID Adapter 2<br>192.163.2.214, 1769-135E Ethernet Port, 1769-135E Ethernet Port |                                          |
|       | Backplane, CompactLogix System                                                                                                                                | Driver Diagnostics<br>Configure Driver   |
|       |                                                                                                                                                               | Upload EDS file from device              |
|       |                                                                                                                                                               | Security                                 |
|       |                                                                                                                                                               | Device Properties<br>Module Statistics 4 |
| For H | lp, press F1                                                                                                                                                  | Module Configuration 09/04/11 11:06 AM   |

After you open RSLinx:

- 1. Click the RS-Who icon.
- 2. Expand the Ethernet connection.
- 3. Right-click the RFID Adapter.
- 4. Click Module Configuration.

After the Configuration window appears:

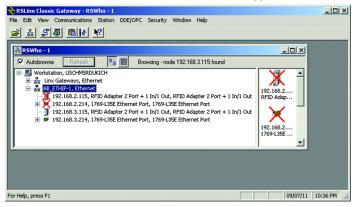
- 1. Click the Port Configuration tab.
- 2. Set the Network Configuration Type to Static (if not already done).
- Change the IP address to the new address. In this example, the address is changed from 192.168.2.115 to 192.168.3.115.


| <ul> <li>Network Configuration Ty</li> <li>Static</li> </ul> |              | Dun   | amic    |     |   |     |                   |  |
|--------------------------------------------------------------|--------------|-------|---------|-----|---|-----|-------------------|--|
| Use DHCP to obta     Use BOOTP to obta                       | in network c | onfig | guratic |     | ~ | / 3 | 3. Change 2 to 3. |  |
| P Address:                                                   | 192          |       | 168     | 2   |   | 115 |                   |  |
| letwork Mask:                                                | 255          |       | 255     | 255 |   | 0   |                   |  |
| ateway Address:                                              | 0            |       | 0       | 0   |   | 0   |                   |  |
| rimary Name<br>Server                                        | 192          |       | 168     | 1   |   | 1   |                   |  |
| iecondary Name<br>ierver:                                    | 0            |       | 0       | 0   |   | 0   |                   |  |
| omain Name:                                                  |              |       |         |     | _ |     |                   |  |
| lost Name:                                                   |              |       |         |     |   |     |                   |  |
| itatus: Network Ir                                           |              |       |         |     |   |     |                   |  |

a. Click Yes to confirm the change.

| ControlL | ogix Gateway Tool 🔀                                                                                                |  |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|          | Changing the IP Address of this modules will cause all<br>connections routed through this module to become broken. |  |  |  |  |  |  |  |  |
|          | Do you wish to continue?                                                                                           |  |  |  |  |  |  |  |  |
|          | Yes No                                                                                                             |  |  |  |  |  |  |  |  |

#### b. To close the configuration window, click OK.


RSLinx places an X over the RFID adapter because it can no longer communicate with it.



c. Use the same steps to change the IP address of the other devices on the network.

Change the Network adapter address to 192.168.3.1.

d. Close and reopen the RSWho window. The older addresses are not available and the new addresses (192.168.3.115 and 192.168.3.214) appear.



# **IMPORTANT** If DHCP is not disabled, the 56RF interface block shows two requests in the DHCP Server at each 56RF interface block power-up.

In the following example, power was cycled to the 56RF interface block at 7:45:16, 7:47:47, 7:49:06, and again at 10:56:00. Each time power was applied, the 56RF interface block notified the BootP/DHCP server of its IP address, which indicates that DHCP has not been disabled. If DHCP is disabled, the 56RF interface block would show nothing.

| (hr:min:sec)        | Туре  | Ethernet Addre                 | ess (MAC)    | IP Addr    | ess      | Hostname      |         |          |
|---------------------|-------|--------------------------------|--------------|------------|----------|---------------|---------|----------|
| 10:56:00            | DHCP  | 00:00:BC:E5:D                  |              | 192.168    | 3.2.115  | _RFID_1 ┥     | -       |          |
| 10:56:00<br>7:49:06 | DHCP  | 00:00:BC:E5:D<br>00:00:BC:E5:D |              | 192.168    | 0.0.115  |               |         |          |
| 7:49:06             | DHCP  | 00:00:BC:E5:D                  |              | 132.160    | 0.2.110  | RFID_1 <      | DHCP    | has not  |
| 7:47:47             | DHCP  | 00:00:BC:E5:D                  | 0:1D         | 192.168    | 3.2.115  | _RFID_1 ┥     | - been  | disabled |
| 7:47:47<br>7:45:16  | DHCP  | 00:00:BC:E5:D<br>00:00:BC:E5:D |              | 192.168    | 0.115    |               |         |          |
| 7.45.16             | DHUP  | 00.00.80.25.2                  | 0.10         | 132.160    | 0.2.110  | _RFID_1       | -       | •        |
| elation List        |       |                                |              |            |          |               |         |          |
| New Delete          | Enabl | e BOOTP Ena                    | ble DHCP D   | icable ROO |          |               |         |          |
| Hon Dolot           | Endor |                                |              |            | THIOTIG  |               |         |          |
| Ethernet Addre      |       | Туре                           | IP Address   |            | lostname | Description   |         |          |
| 00:00:BC:E5:D       | 0:1D  | DHCP                           | 192.168.2.11 | 5_         | RFID_1   | 56RF Interfac | e Block |          |
|                     |       |                                |              |            |          |               |         |          |
|                     |       |                                |              |            |          |               |         |          |

# **IP Address 888**

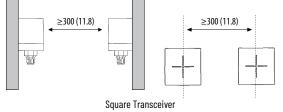
Address 888 is used to reset the interface block to the factory defaults. Rotate the address switches to 888 and cycle the power. The interface block clears out the current assigned IP address.

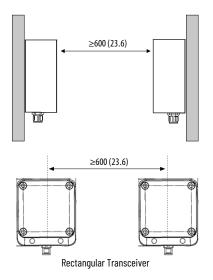
The MOD indicator flashes the following pattern: flashes red once, green once, then steady red, then flashes green once, and final flashes continuous red about once each second. The reset process takes about 10 seconds.

# Notes:

# **Mechanical Installation**

Each transceiver generates a similar but unique RF field.


# Attach the transceiver to the flat plate with M5 screws. The tightening torque must be 1.5 N·m (13.3 lb·in) for the M5 screw.

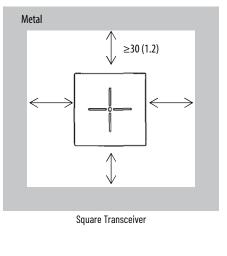

# Spacing Between Transceivers

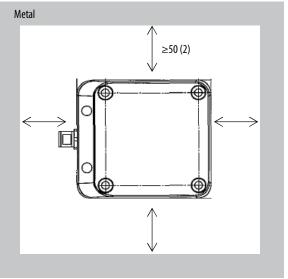
**Fastening** 

The installation of multiple transceivers causes radio frequency interference and can result in tag communication difficulty. Keep a sufficient distance between the transceivers as shown in Figure 13.

Figure 13 - Spacing Between Transceivers [mm (in.)]







# Spacing Next to Metal Surfaces

For the square transceiver, the communication distance drops significantly when the distance between the transceiver and any surrounding metal is 30 mm (1.2 in.) or less.

For the rectangular transceiver, the communication distance drops significantly when the distance between the transceiver and any surrounding metal is 50 mm (2 in.) or less.

Figure 14 - Transceiver Spacing with Metal Surfaces

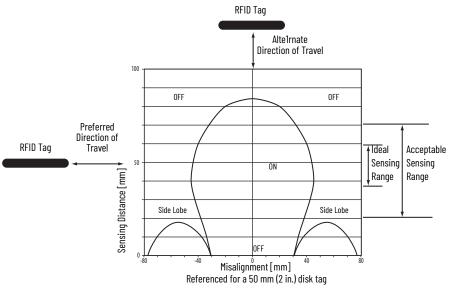




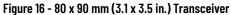
Rectangular Transceiver

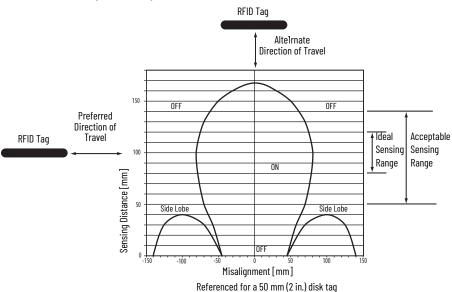
# **Transceiver Field Maps**

The transceiver has a three-dimensional RF field that emanates from its sensing surface. The field consists of a main center lobe and a secondary side lobe.


The RF tags must enter the RF field once, stay long enough to complete the read and write cycles, and then to leave the field smoothly and efficiently.

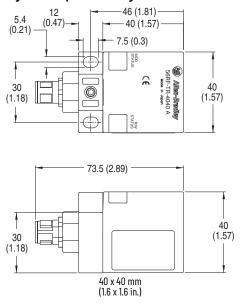
Ideally, the RFID tag must pass through the widest section of the main lobe. This arrangement maximizes the time that the transceiver has for reading and writing. Avoid the top of the field, and avoid the side lobes.

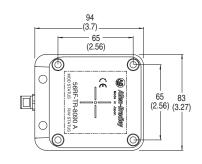

The preferred direction of travel is for the tag to pass across the RFID sensor surface. The tag can also approach the sensor surface directly and then move away directly backwards or to the side.


Figure 15 on page 43 shows the field map of the 65 x 65 mm (2.6 x 2.6 in.) transceiver.

#### Figure 15 - 65 x 65 mm (2.6 x 2.6 in.) Transceiver




The field map for the 80 x 90 mm (3.1 x 3.5 in.) transceiver, which is shown in Figure 16, is similar.






# **Approximate Dimensions**

#### Figure 17 - Square/Rectangular Transceivers





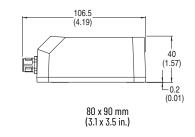
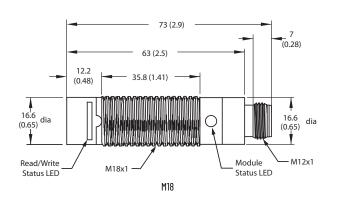
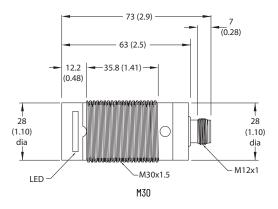





Figure 18 - Cylindrical Transceivers

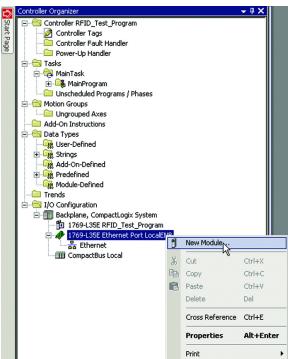




# Add Your RFID Interface Block to an RSLogix 5000 Program

# Procedure

- 1. Open RSLogix 5000® software.
- 2. Click File>New.


|   | SLogix 5000<br>Edit View Search Logic Communications | Tools W | /indow |
|---|------------------------------------------------------|---------|--------|
| ð | <u>N</u> ew                                          | Ctrl+N  |        |
| 2 | Open K<br>Close                                      | Ctrl+0  | P      |
|   | Save<br>Save <u>A</u> s                              | Ctrl+S  |        |
|   | Ne <u>w</u> Component<br>Import Component            | ۲<br>۲  |        |
|   | Compact                                              |         |        |
|   | Page Setyp                                           |         |        |
|   | Generate Report                                      |         | н      |

3. Enter the new controller information.

| New Controller |                                                                                               |   | 2      |
|----------------|-----------------------------------------------------------------------------------------------|---|--------|
| Vendor:        | Allen-Bradley                                                                                 |   |        |
| Туре:          | 1769-L35E CompactLogix5335E Controller                                                        | • | ОК     |
| Revision:      | 19 💌                                                                                          |   | Cancel |
|                | F Redundancy Enabled                                                                          |   | Help   |
| Name:          | RFID_Test_Project                                                                             |   |        |
| Description:   | This test project shows how to quickly get started with a<br>56RF RFID system in RSLogix 5000 | * |        |
|                |                                                                                               | ~ |        |
| Chassis Type:  | <none></none>                                                                                 | - |        |
| Slot:          | Safety Partner Slot: <none></none>                                                            |   |        |
| Create In:     | C:\Program Files\Rockwell Software\RSLogix Programs                                           |   | Browse |
|                |                                                                                               |   |        |
|                |                                                                                               |   |        |

4. Right-click the Ethernet port of the controller.

5. Click New Module.



6. Select the desired 56RF module and click OK.

| Module                          | Description                                                                                                     | Vendor                                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Communications                  |                                                                                                                 |                                                  |
| 🛨 Digital                       |                                                                                                                 |                                                  |
| Drives                          |                                                                                                                 |                                                  |
| 🕀 HMI                           |                                                                                                                 |                                                  |
| Specialty                       |                                                                                                                 |                                                  |
| - 5XRF_IN_IP                    | RFID Interface Module                                                                                           | Allen-Bradley                                    |
| 48MS-SN1PF1-M2                  | MultiSight Vision Sensor, 6mm lens                                                                              | Allen-Bradley                                    |
| - 48MS-SN1PF2-M2                | MultiSight Vision Sensor, 12mm lens                                                                             | Allen-Bradley                                    |
|                                 |                                                                                                                 |                                                  |
| 56RF-IN-IPD22                   | RFID ICode Interface Module (Dual Channel 1 Digit                                                               | tal In / Allen-Bradley                           |
|                                 | RFID ICode Interface Module (Dual Channel 1 Digit<br>RFID ICode Interface Module (Dual Channel 2 Digit          |                                                  |
|                                 |                                                                                                                 | tal Inpu Allen-Bradley                           |
| 56RF-IN-IPD22A                  | 🕅 RFID ICode Interface Module (Dual Channel 2 Digi                                                              | tal Inpu Allen-Bradley                           |
| 56RF-IN-IPD22A                  | 🕅 RFID ICode Interface Module (Dual Channel 2 Digi                                                              | tal Inpu Allen-Bradley                           |
| 56RF-IN-IPD22A                  | 🕅 RFID ICode Interface Module (Dual Channel 2 Digi                                                              | tal Inpu Allen-Bradley                           |
| 56RF-IN-IPD22A                  | ଐ RFID ICode Interface Module (Dual Channel 2 Digi<br>RFID ICode Interface Module (Single Channel 1 Dig         | tal Inpu Allen-Bradley<br>gital In Allen-Bradley |
| 56RF-IN-IPD22A                  | 🕅 RFID ICode Interface Module (Dual Channel 2 Digi                                                              | tal Inpu Allen-Bradley<br>gital In Allen-Bradley |
| 56RF-IN-IPD22A<br>56RF-IN-IP512 | ଐ RFID ICode Interface Module (Dual Channel 2 Digi<br>RFID ICode Interface Module (Single Channel 1 Dig         | tal Inpu Allen-Bradley<br>gital In Allen-Bradley |
| 56RF-IN-IPD22A<br>56RF-IN-IP512 | ∜RFID ICode Interface Module (Dual Channel 2 Digil<br>RFID ICode Interface Module (Single Channel 1 Dig<br>Find | tal Inpu Allen-Bradley<br>gital In Allen-Bradley |

### **General Tab**

The General tab describes the device, its definition, and its IP address. Make the changes that are shown <u>Figure 19</u> and click Apply.

#### Figure 19 - General Tab

| Controller Organizer 🗸 🕂 🗙 | Module Properties: LocalENB (56RF-IN-IPD22 1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                            | Generali Connection Module Into Internet Protocol Port Configuration         Type:       568F-IN-IPD22 BFD ICode Interface Module (Dual Channel 1) ligital In / 1 Digital         Verdor:       Alem-Baday         Patent:       LocaEN8         Description:       2 Transceivers         1       Distal Input         Module Definition       A Change         Series:       A Change         Revision:       1.1         Electonic Keying:       Compatible Module         Connection:       Data         DetaFormat:       SINT |      |
|                            | Status: Offine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Help |

- Enter a name for the module. In this example, the name is RFID\_1. You can have multiple
  modules, so be sure to give it a brief but descriptive name. The name that you assign to
  the module appears in the Controller Organizer navigation pane. The name also appears
  in the description of the tags, which are described later.
- 2. Enter a description of the module or its function.
- 3. The Data Format can be left as SINT (preferred) or changed to INT (for compatibility with non-Rockwell Automation<sup>®</sup> RFID tags).



A SINT is a signed single-byte integer, which can represent numbers from -255...255 in decimal format (-F...FF in hexadecimal format). An INT is a signed 2 byte integer, which can represent numbers from -65535...65535 in decimal format (-FFFF...FFFF in hexadecimal format).

4. Set the MAC address for the module. In this example, the address is 192.168.1.115. The 115 reflects the address of the three rotary switches on the Bulletin 56RF interface block.

#### **MAC Address**

When the controller is offline, the MAC address can be set. You have three options.

 When a Private Network is used, click Private Network. Enter a value for the last octet between 1...254. Be sure not to duplicate the address of an existing device. In the following example, the address of the RFID block is 192.168.1.115.

| Ethernet Address |            |       |  |  |  |  |  |  |
|------------------|------------|-------|--|--|--|--|--|--|
| Private Network: | 192.168.1. | 115 ÷ |  |  |  |  |  |  |
| C IP Address:    |            | •     |  |  |  |  |  |  |
| C Host Name:     |            |       |  |  |  |  |  |  |

• When multiple networks exist, you can elect to set the address to some other value. When offline, simply click IP address and enter the desired address.

| Ethernet Address |   |      |     |      |   |                |  |  |
|------------------|---|------|-----|------|---|----------------|--|--|
| rk:              | 1 | 192. | 168 | 8.1. |   | *<br>*         |  |  |
| 200              | • | 1    |     | 33   | • | 105            |  |  |
| O Host Name:     |   |      |     |      |   |                |  |  |
|                  |   |      |     |      |   | rk: 192.168.1. |  |  |

• Click Host Name and type in the name of the host. In the following example, the host name is QPACK4.

| Ethernet Address  |              |
|-------------------|--------------|
| C Private Network | : 192.168.1. |
| C IP Address:     |              |
| Host Name: 0      | PACK4        |

# **Module Definition**

You do not need to change the default values. If necessary, changes can be made by clicking Change.

You can change the Series, Revision, Electronic Keying, Connection, and Data Format. Click the down arrow on the Data Format field and select SINT.

| Module Definition*                         |                             | x |
|--------------------------------------------|-----------------------------|---|
| Series:<br>Revision:<br>Electronic Keying: | A<br>1<br>Compatible Module |   |
| Connection:                                | Data 🔽                      |   |
| DataFormat:                                | SINT                        |   |
|                                            |                             |   |
|                                            | Cancel Help                 | _ |
|                                            |                             |   |

Click OK to accept the changes (or Cancel to retain the original settings). Click Help for more info.

# **Connection Tab**

#### You do not need to change any settings on this tab.

| General* Connection Module Info Internet Protocol Port Configuration |
|----------------------------------------------------------------------|
| Requested Packet Interval (RPI): 20.0 🚔 ms (2.0 - 750.0)             |
| Inhibit Module                                                       |
| Major Fault On Controller If Connection Fails While in Run Mode      |
| Vise Unicast Connection over EtherNet/IP                             |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
| Module Fault                                                         |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |

| Setting                                                               | Description                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requested Packet<br>Interval                                          | Specify the number of milliseconds between requests for information from the controller to the RFID block. The block can provide data on a shorter interval, but if no data is received, the controller asks the RFID block for a status update. Minimum setting is 2. Maximum setting is 750. |
| Inhibit Module                                                        | When checked, the RFID block is not polled for information, and the controller ignores any information that is provided.                                                                                                                                                                       |
| Major Fault on Controller<br>If Connection Fails While<br>In Run Mode | Check this box if a connection failure is considered a major fault.                                                                                                                                                                                                                            |
| Use Unicast Connection<br>over EtherNet/IP                            | Unicast connections are point-to-point connections. Multicast connections are considered one-to-many. Unicast reduces the amount of network bandwidth used.                                                                                                                                    |
| Module Fault                                                          | Fault messages appear in this box.                                                                                                                                                                                                                                                             |

## **Module Info Tab**

The Module Info tab contains read-only data that is populated when the controller goes online (a program is downloaded to or uploaded from the controller).

In the left panel, the Add-on Profile (AOP) shows the vendor, product type, product code. Revision level, serial number, and product name.

| General Connec     | tion Module Info Internet Prot | ocol Port Configuratio | n]         |          |       |      |
|--------------------|--------------------------------|------------------------|------------|----------|-------|------|
| - Identification - |                                | Status                 |            |          |       |      |
| Vendor:            | Allen-Bradley                  | Major Fault:           | None       |          |       |      |
| Product Type:      |                                | Minor Fault:           | None       |          |       |      |
| Product Code:      | 56RF-IN-IPD22                  | Internal State:        | Run mode   |          |       |      |
| Revision:          | 1.1                            |                        |            |          |       |      |
| Serial Number:     | 00020004                       | Configured:            | Configured | -        |       |      |
| Product Name:      |                                | Owned:                 | No         |          |       |      |
|                    | In/1 Out                       | Module Identity:       | Match      |          |       |      |
|                    |                                |                        |            |          |       |      |
|                    |                                | Refresh                | Reset      | Module ← |       |      |
|                    |                                |                        |            |          |       |      |
| Status: Running    |                                |                        | OK         | Cancel   | Apply | Help |

In the right panel, the AOP shows the fault status, internal state (Run mode), and whether the file is owned and Module Identity.

The Refresh and Reset Module buttons are active when the controller is online.

Refresh

Click to refresh the data in the window.

Reset Module

Click with care as it disconnects the module momentarily and control is interrupted. The following warning window appears.

| RSLogix  | 5000                                                                                                                                                        | × |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|          | DANGER. Connection Interruption.                                                                                                                            |   |
| <u>•</u> | Reset should not be performed on a module currently being used for control.<br>The connection to the module will be broken, and control may be interrupted. |   |
|          | Continue with Reset?                                                                                                                                        |   |
|          | Yes No Help                                                                                                                                                 |   |

Click Yes or No as needed. Click Help for further information.

# **Internet Protocol Tab**

For the purposes of this user manual, you are expected to use a Private Address, that is, an address of 192.168.1.xxx. This window is automatically populated with the data.

| Module Properties: LocalENB (56RF-IN-IPD22 1.1)                                                                                                  |                                                                                                                           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| General Connection Module Info Internet Protocol Port Configu                                                                                    | ration                                                                                                                    |      |
| Internet Protocol (IP) Settings<br>IP settings can be manually configured or can be automatically co<br>if the network supports this capability. | nfigured                                                                                                                  |      |
| Manually configure IP settings                                                                                                                   |                                                                                                                           |      |
| Obtain IP settings automatically using BOOTP                                                                                                     |                                                                                                                           |      |
| Obtain IP settings automatically using DHCP                                                                                                      |                                                                                                                           |      |
| C IP settings set by switches on the module                                                                                                      |                                                                                                                           |      |
| IP Settings Configuration Physical Module IP Address: 192.168.1.115                                                                              | Subnet Mask:         255.255.255.0           Gateway Address:         0.0.0.0                                             | -    |
| Domain Name:<br>Host Name:                                                                                                                       | Primary DNS Server 0 . 0 . 0 . 0<br>Address: 0 . 0 . 0 . 0<br>Server Address: 0 . 0 . 0 . 0<br>Refresh communication. Set |      |
| Status: Running                                                                                                                                  | OK Cancel Apply                                                                                                           | Help |

### **Port Configuration Tab**

Changes to the fields on the Port Configuration tab are not required for the Quick Start process. These fields only become active when the controller is online.

The number of ports that are shown in this window varies depending on the block used. There are either one or two ports.

The following window shows two ports. Port 1 is active, while Port 2 is inactive.

General Connection Module Info Internet Protocol Port Configuration

|        |        |        |             | Auto-     | Sp       | eed      | Dup       | lex     | Port        |      |       |      |  |
|--------|--------|--------|-------------|-----------|----------|----------|-----------|---------|-------------|------|-------|------|--|
|        | Port   | Enable | Link Status | Negotiate | Selected | Current  | Selected  | Current | Diagnostics |      |       |      |  |
|        | 1      |        | Active      |           | <b>*</b> | 100 Mbps | Ŧ         |         |             |      |       |      |  |
|        | 2      | V      | Inactive    | V         | ~        | 100 Mbps | -         | Full    |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      | 1     |      |  |
|        |        |        |             |           |          |          | Refresh c | ommunic | ation.      | Set  | +     |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         |             |      |       |      |  |
|        |        |        |             |           |          |          |           |         | _           |      |       |      |  |
| Status | : Runi | ning   |             |           |          |          |           | OK      | Car         | ncel | Apply | Help |  |

Click the ellipsis (...) under the Port Diagnostics. The following window appears, which shows the communication that takes place between the controller and the transceiver that is connected to the port.

| Port Diagnostics - Port: 1                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                           | <u>×</u>                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Interface Counters<br>Octets Inbound:<br>Octets Dutbound:<br>Unicast Packets Inbound:<br>Unicast Packets Dutbound:<br>Non-unicast Packets Inbound:<br>Non-unicast Packets Outbound:<br>Packets Discarded Inbound:<br>Packets Discarded Outbound:<br>Packets With Errors Inbound:<br>Packets With Errors Inbound:<br>Unknown Protocol<br>Packets Inbound. | 35877556<br>34787883<br>106456<br>85172<br>79<br>3<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Media Counters<br>Alignmerk Errors:<br>FCS Errors:<br>Single Collisions:<br>Multiple Collisions:<br>SQE Test Errors:<br>Deferred Transmissions:<br>Late Collisions:<br>Excessive Collisions:<br>MAC Transmit Errors:<br>MAC Transmit Errors:<br>MAC Transmit Errors:<br>Carrier Sense:<br>Frame Too Long: | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| [                                                                                                                                                                                                                                                                                                                                                        | Close                                                                                      | Help                                                                                                                                                                                                                                                                                                      | Reset Counters ←                                                                       |

# **Notes:**

# **RSLogix 5000 Controller Tags**

During the module installation, the RFID\_1 tags are automatically loaded as controller tags, which makes the tags available to all programs.

In the Controller Organizer, click the Controller Tags.

| Controller Organizer  - II ×<br>Controller RFID Sample Code V1 | s | cope: 🖺 RFID_Sample_C 💌 Show: All Tags |           |              |         | 💌 🔽 Enter Name Fil        |
|----------------------------------------------------------------|---|----------------------------------------|-----------|--------------|---------|---------------------------|
| Controller Tags                                                |   | Name III A                             | Value +   | Force Mask * | Style   | Data Type                 |
| - Controller Fault Handler                                     |   | _Disable1                              | 0         |              | Decimal | BOOL                      |
| Power-Up Handler                                               |   |                                        | 1 Tags () | ()           |         | AB:56RF_IN_IPD22:C:0      |
| Tasks                                                          |   | ERFID_1:1                              | {}        | {}           |         | AB:56RF_IN_IPD22_SINT:I:0 |
| Motion Groups     Add-On Instructions                          |   | H-RFID_1:0                             | qs ()     | ()           |         | AB:56RF_IN_IPD22_SINT:0:0 |
| Add-on Instructions     Data Types                             |   | ⊞ Address                              | 0         |              | Decimal | INT                       |
| Trends                                                         |   | ⊞ AFI_Value                            | 0         |              | Decimal | INT                       |
| E G I/O Configuration                                          |   | ⊞ Baud_Rate                            | 0         |              | Decimal | INT                       |
| E I Backplane, CompactLogix System                             |   | E-Block_Number                         | 3         |              | Decimal | INT                       |
| 1769-L35E RFID_Sample_Code_V1                                  |   | H Block_Size                           | 0         |              | Decimal | INT                       |
| Ethernet                                                       |   | ⊞ Bytes_per_Block                      | 4         |              | Decimal | INT                       |
| 56RF-IN-IPD22/A RFID_1                                         |   | Change_Poll                            | 0         |              | Decimal | BOOL                      |
| 1769-L3SE Ethernet Port LocalENB                               |   | Change_Poll_CMD                        | 0         |              | Decimal | BOOL                      |
| CompactBus Local                                               |   | Change_Poll_CMD_ONS                    | 0         |              | Decimal | BOOL                      |

Three categories of tags appear. The tag name is composed of the module name followed by:

- ":C" for Configuration
- ":l" for Input
- ":0" for Output.

# Configuration Image Table and Tags

# Expand the RFID\_1:C by clicking "+" to show the configuration image table, which has the following tags:

| Scope: Show: All Ta               | gs      |              |         | ▼ 7.                 |
|-----------------------------------|---------|--------------|---------|----------------------|
| Name == A                         | Value 🔶 | Force Mask 🗲 | Style   | Data Type            |
| E-RFID_1:C                        | ()      | {}           |         | AB:56RF_IN_IPD22:C:0 |
| HRFID_1:C.Ch0BaudRate             | 115200  |              | Decimal | DINT                 |
| ⊞-RFID_1:C.Ch1BaudRate            | 115200  |              | Decimal | DINT                 |
| -RFID_1:C.CRN                     | 0       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt00FaultMode           | 0       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt00FaultValue          | 0       |              | Decimal | BOOL                 |
| BFID_1:C.Pt00FilterOffOn          | 1000    |              | Decimal | INT                  |
| HRFID_1:C.Pt00FilterOnOff         | 2000    |              | Decimal | INT                  |
| -RFID_1:C.Pt00NoLoadEn            | 1       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt000penWireEn          | 1       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt000uputShortCircuitEn | 0       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt00ProgMode            | 0       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt00ProgToFaultEn       | 1       |              | Decimal | BOOL                 |
| -RFID_1:C.Pt00ProgValue           | 0       |              | Decimal | BOOL                 |
| RFID_1:C.Pt00ShortCircuitEn       | 0       |              | Decimal | BOOL                 |

| Tag                          | Description                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ChOBaudRate                  | The communication rate for Channel 0 from the RFID block to the RFID transceiver is stored in this tag. Allowable communication rates are 9600, 19200, 38400, and 115200. The default value is 115200.                                                                                                                                                                                             |
| Ch1BaudRate                  | The communication rate for Channel 1 from the RFID block to the RFID transceiver is stored in this tag. Allowable communication rates are 9600, 19200, 38400, and 115200. The default value is 115200.                                                                                                                                                                                             |
| CRN                          | The Configuration Revision Number is used internally with RSLogix™ for configuration information. You do not need to use this tag.                                                                                                                                                                                                                                                                 |
| Pt00FaultMode                | The Pt00FaultMode is used with FaultValue to configure the state of output 0 when a communications fault occurs. A value of 0 means that, if there is a communications fault, the value in FaultValue is used (OFF or ON). A value of 1 means that the last state is held. By default this value is 0.                                                                                             |
| Pt00FaultValue               | The Pt00FaultValue is used with FaultMode to configure the state of output 0 when a communications fault occurs. A value of 0 is 0FF; a value of 1 is 0N. By default the value is 0.                                                                                                                                                                                                               |
| Pt00Filter0ff0n              | The Pt00FilterOffOn is used to determine the OFF- to ON-delay time for input point 0 before the interface considers the input point ON or True. A value of 0 indicates that there is no delay from an OFF condition to an ON condition; the only delay would be a hardware delay. A value >0 would delay the input turning ON by the configured value in milliseconds. By default this value is 0. |
| Pt00Filter0n0ff              | The Pt00Filter0nOff is used to determine the ON- to OFF-delay time for input point 0 before the interface considers the input point OFF or False. A value of 0 indicates that there is no delay from an ON to OFF condition; the only delay would be a hardware delay. A value >0 would delay the input turning OFF by the configured value in milliseconds. By default this value is 0.           |
| Pt00NoLoadEn                 | The Pt00NoLoadEn is used to enable or disable No Load diagnostic detection for output<br>0. A value of 1 means that No Load diagnostic detection is enabled; a value of 0 means<br>that No Load diagnostic detection is disabled. By default this value is 0.                                                                                                                                      |
| Pt000penWireEn               | The Pt000penWireEn is used to enable or disable the open wire detection for input point 0. A value of 1 means that open wire detection is enabled; a value of 0 means that open wire detection is disabled. By default this value is 1.                                                                                                                                                            |
| Pt000utputShortCircuitE<br>n | The Pt000utputShortCircuitEn is used to enable or disable the short circuit detection for output point 0. A value of 1 means that short circuit detection is enabled; a value of 0 means that short circuit detection is disabled. By default this value is 0.                                                                                                                                     |
| Pt00ProgMode                 | The Pt00ProgMode is used with ProgValue to configure the state of output 0 when the controller is in Program mode. A value of 0 means that the ProgValue (0FF or 0N) is used when the controller is in Program mode. A value of 1 means that the last state is held. By default this value is 0.                                                                                                   |
| Pt00ProgValue                | The Pt00ProgValue is used with ProgMode to configure the state of output 0 when the controller is in Program mode. A value of 0 is OFF; a value of 1 is 0N. By default this value is 0.                                                                                                                                                                                                            |
| Pt00ShortCircuitEn           | The PtOOShortCircuitEn is used to enable or disable the short circuit detection for input point 0. A value of 1 means that short circuit detection is enabled; a value of 0 means that short circuit detection is disabled. By default this value is 0.                                                                                                                                            |

# Input Image Table and Tags

Expand the RFID\_1:I by clicking "+" to show the input image table, which has the following tags:

| cope: BriD_Sample_P    |              | <ul> <li>Enter Name Filter</li> </ul> |              |         |                                |
|------------------------|--------------|---------------------------------------|--------------|---------|--------------------------------|
| Name                   | 1 S C        | Value 🔶                               | Force Mask 🗲 | Style   | Data Type                      |
| -RFID_1:I              |              | {}                                    | {}           |         | AB:56RF_IN_IPD22:1:0           |
| -RFID_1:I.AuxPwrFaul   | t            | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.BlockFault   |              | 0                                     |              | Decimal | BOOL                           |
| ■ RFID_1:I.Channel     |              | {}                                    | {}           |         | AB:56RF_IN_IP_Struct_In:I:0[2] |
| ■ RFID_1:I.Fault       |              | 2#0000_0000_0000_000                  |              | Binary  | DINT                           |
| +-RFID_1:I.ModuleState | st           | 2#0000_0000_0000_000                  |              | Binary  | DINT                           |
| -RFID_1:I.Pt00Data     |              | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt00InputFa  | ult          | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt00InputSh  | nortCircuit  | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt00NoLoad   | ł            | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt000penW    | /ire         | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt000utput   | Fault        | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt000utput   | ShortCircuit | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Pt00Readba   | ack          | 0                                     |              | Decimal | BOOL                           |
| -RFID_1:I.Run          |              | 0                                     |              | Decimal | BOOL                           |

| Tag                    | Description                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AuxPwrFault            | The AuxPwrFault bit indicates if there is no auxiliary power detected. A value of 0 indicates no fault; a value of 1 indicates a fault condition.                                                                                                                                                                                                                                                                      |
| BlockFault             | The Block Fault bit indicates if any of the RFID channels or input/output points is in a fault condition. A value of 0 indicates that the RFID channels and input/output points are functioning correctly. A value of 1 indicates one or more of the RFID channels and/or input/output points are in a fault condition. Individual RFID channel fault bits are contained within each associated Channel[x] input word. |
| Channel                | See <u>Input Channel Tags on page 56</u> .                                                                                                                                                                                                                                                                                                                                                                             |
| Fault                  | The Fault word is a 4-byte value that stores the connection status between the interface and the controller. A value of 0 indicates that a connection has been established; a value of -1 indicates no connections.                                                                                                                                                                                                    |
| ModuleStatus           | The Module status is a 4-byte value that contains the overall status of the module. A value of 0 or 1 indicates that the module is functioning with no faults; a value greater than 1 indicates that a fault condition exists. The ModuleStatus word varies slightly based on the configured unit.                                                                                                                     |
| Pt00Data               | The Pt00Data bit indicates if the status of input point 0. A value of 0 indicates open; a value of 1 indicates closed.                                                                                                                                                                                                                                                                                                 |
| Pt00InputFault         | The Pt00InputFault bit indicates if the input point 0 has a fault condition. Input faults would be Open Wire and/or Short Circuit. A value of 0 indicates no fault condition; a value of 1 indicates a fault condition.                                                                                                                                                                                                |
| Pt00InputShortCircuit  | The Pt00InputShortCircuit bit indicates if the input point 0 has a short condition. A value of 0 indicates no fault; a value of 1 indicates a fault condition. Short circuit detection can be enabled or disabled during configuration.                                                                                                                                                                                |
| Pt00NoLoad             | The Pt00NoLoad bit indicates if the output point 0 has a no load condition; No load detection only occurs when the output point is 0FF. A value of 0 indicates no fault; a value of 1 indicates a fault condition. No load detection can be enabled or disabled during configuration.                                                                                                                                  |
| Pt000penWire           | The Pt000penWire bit indicates if the input point 1 has an open wire condition. A value of 0 indicates no fault; a value of 1 indicates a fault condition. Open wire detection can be enabled or disabled during configuration.                                                                                                                                                                                        |
| Pt000utputFault        | The Pt000utputFault bit indicates if the output point 0 has a fault condition. Output faults would be No Load and/or Short Circuit. A value of 0 indicates no fault; a value of 1 indicates a fault condition.                                                                                                                                                                                                         |
| Pt000utputShortCircuit | The Pt000utputShortCircuit bit indicates if the output point 0 has a short condition. A value of 0 indicates no fault; a value of 1 indicates a fault condition; output short-circuit detection only occurs when the output is 0N. Short circuit detection can be enabled or disabled during configuration.                                                                                                            |
| Pt00Readback           | The Pt00Readback bit indicates the status of the output point Pt00Data. If the output bit Pt00Data is 1, indicating that the output has been commanded to turn ON, then when the output point turns ON Pt00Readback contains the value of 1.                                                                                                                                                                           |
| Run                    | The Run bit indicates if the block is in run or program mode. A value of 1 indicates that the block is in run mode; a value of 0 indicates that the block is in program mode.                                                                                                                                                                                                                                          |

# **Input Channel Tags**

Expand the RFID\_1:Channel by clicking "+" to show that two channels exist (Channel[0] and Channel[1]). Expand the RFID\_1:Channel[0] by clicking "+". Each channel has the following tags:

| Scope: TRFID_Sample_P Show: All Tags |               |       |    |              |         |                                |
|--------------------------------------|---------------|-------|----|--------------|---------|--------------------------------|
| Name                                 | 18 L          | Value | +  | Force Mask 🔦 | Style   | Data Type                      |
| -RFID_1:I.Channel                    |               |       | {} | {}           |         | AB:56RF_IN_IP_Struct_In:I:0[2] |
| -RFID_1:I.Channel[0]                 |               |       | {} | {}           |         | AB:56RF_IN_IP_Struct_In:I:0    |
| RFID_1:I.Channel                     | 0].Busy       |       | 0  |              | Decimal | BOOL                           |
|                                      | 0].ChError    |       | 0  |              | Decimal | SINT                           |
| ⊞-RFID_1:I.Channel                   | 0].Command    |       | 0  |              | Decimal | INT                            |
| RFID_1:I.Channel                     | 0].ContReadM  |       | 0  |              | Decimal | BOOL                           |
|                                      | 0].Counter    |       | 0  |              | Decimal | INT                            |
| ⊞-RFID_1:I.Channel                   | 0].Data       |       | {} | {}           | Decimal | INT[80]                        |
| -RFID_1:I.Channel                    | 0].Fault      |       | 0  |              | Decimal | BOOL                           |
|                                      | 0].Length     |       | 0  |              | Decimal | INT                            |
| RFID_1:I.Channel                     | 0].Reset      |       | 0  |              | Decimal | BOOL                           |
| RFID_1:I.Channel                     | 0].ResetInPro |       | 0  |              | Decimal | BOOL                           |
| RFID_1:I.Channel                     | 0].TagPresent |       | 0  |              | Decimal | BOOL                           |
| +-RFID_1:I.Channel[1]                |               |       | {} | {}           |         | AB:56RF_IN_IP_Struct_In:1:0    |

| Tag             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Busy            | The channel Busy bit indicates the status of an RFID channel. A value of 0 indicates that the RFID channel is not executing a command. A value of 1 indicates that a command is in the process of executing on that channel.                                                                                                                                                                                                                    |
| ChError         | The channel ChError is a 1-byte word that contains the last error code for that channel.<br>A value of 0 indicates no error, a value >0 indicates some error. See<br><u>Error Codes for RFID Interface Block on page 129</u> for a list of the error codes.                                                                                                                                                                                     |
| Command         | The channel command word is a 2-byte value that stores the last command that the channel received; at power-up this value must be 0. The allowable commands are listed in <u>Table 23 on page 57</u> .                                                                                                                                                                                                                                          |
| ContReadMode    | The channel ContReadMode bit indicates the status of Continuous Read Mode for an RFID channel. A value of 0 indicates that the RFID channel is not in continuous read mode; a value of 1 indicates that the RFID channel is in continuous read mode. While in Continuous Read Mode, the interface ignores all other commands except a Stop Continuous Read.                                                                                     |
| Counter         | The channel counter word is a 2-byte value that increments its value by 1 after the interface has completed execution of a command. This value rolls over to 0 after it counts to 65535 and starts again; at power-up this value must be 0.                                                                                                                                                                                                     |
| Data            | Depending on the Data Format, the channel Data word is an array of either 2-byte values or an array of 1-byte values that total 160 bytes in length. This array is used to store information that is returned from the RFID interface. Upon completion a command, reply data is deposited in this array and the length of the reply (in 16-bit word increments) is placed within the associated length field; at power-up this value must be 0. |
| Fault           | The channel fault bit indicates the fault status of the RFID channel. A value of 0 indicates that the channel is operating normally; a value of 1 indicates that the channel has faulted.                                                                                                                                                                                                                                                       |
| Length          | The channel length word is a 2-byte value that indicates the data length for specific commands. Upon completion of a command, this word is populated with the number of 16-bit words that are returned to the data field; at power-up this value must be 0.                                                                                                                                                                                     |
| Reset           | The channel reset bit indicates the reset status of the RFID channel. A value of 0 indicates that the channel is not in reset; a value of 1 indicates that the channel has completed a reset.                                                                                                                                                                                                                                                   |
| ResetInProgress | The channel ResetInProg bit indicates the status of an RFID channel reset. A value of 0 indicates that the RFID channel is not currently undergoing a reset; a value of 1 indicates a reset in progress on that channel.                                                                                                                                                                                                                        |
| TagPresent      | The channel TagPresent bit indicates the status of a tag at the RFID channel. A value of 0 indicates that there is not tag present at the transceiver; a value of 1 indicates one or more tags have been detected at the transceiver.                                                                                                                                                                                                           |

| Value | Command                            | Description                                                                                               |
|-------|------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1     | Read Single Block                  | Reads one block of user data.                                                                             |
| 2     | Read Multiple Blocks               | Reads multiple blocks of user data from a tag.                                                            |
| 3     | Multi-tag Block Read               | Reads information from up to four tags.                                                                   |
| 4     | Read Byte                          | Reads bytes of user data from a tag.                                                                      |
| 5     | Start Continuous Read              | Initiates continuous read mode.                                                                           |
| 6     | Stop Continuous Read               | Stops continuous read mode.                                                                               |
| 8     | Teach Continuous Read              | Allow you to set the best time to start reading in continuous read mode automatically.                    |
| 10    | Write SingleBlock                  | Writes one block of user data.                                                                            |
| 11    | Write Multiple Blocks              | Writes multiple blocks of user data to a FRAM tag.                                                        |
| 12    | Multi-tag Block Write              | Writes multiple blocks of user data to up to four tags.                                                   |
| 13    | Clear Multiple Bytes               | Clears multiple bytes of user data in a tag.                                                              |
| 14    | Write Byte                         | Writes bytes of data to a tag.                                                                            |
| 20    | Inventory                          | Counts the number of blocks in the field (up to four) and returns the UUID of the first tag in the field. |
| 31    | Read Transceiver Settings          | Read communication rate, Device ID,Retry Time, and Gain.                                                  |
| 33    | Get Version Information            | Retrieves the firmware revision from the transceiver.                                                     |
| 34    | Get System Information             | Gets Info Flags,UUID, DSFID, AFI,Memory Size, and IC Reference from Tag.                                  |
| 40    | Lock Block                         | Locks blocks of memory.                                                                                   |
| 41    | Write AFI                          | Write the AFI byte to the tag.                                                                            |
| 42    | Lock AFI                           | Locks the AFI byte from future changes.                                                                   |
| 43    | Write DSFID                        | Writes the DSFID byte to the tag.                                                                         |
| 44    | Lock DSFID                         | Locks the DSFID byte from future changes.                                                                 |
| 45    | Get Multiple Block Security Status | Retrieves that security status of multiple blocks within a tag.                                           |

#### Table 23 - Allowable Commands

# Output Image Table and Tags

Expand the RFID\_1:0 by clicking "+" to show the output image table, which has the following tags:

| ø | Controller Tags - RFID_Sample_Program_V1(controller) |         |              |         |                                 |  |  |
|---|------------------------------------------------------|---------|--------------|---------|---------------------------------|--|--|
| Γ | Scope: Transfer Show. All Tags                       |         |              |         |                                 |  |  |
|   | Name == A                                            | Value 🔶 | Force Mask 🔦 | Style   | Data Type                       |  |  |
| E | E-RFID_1:0                                           | {}      | {}           |         | AB:56RF_IN_IPD22:0:0            |  |  |
| L | HFID_1:0.Channel                                     | {}      | {}           |         | AB:56RF_IN_IP_Struct_Out:0:0[2] |  |  |
| E | -RFID_1:0.Pt00Data                                   | 0       |              | Decimal | BOOL                            |  |  |
| L | -RFID_1:0.Run                                        | 0       |              | Decimal | BOOL                            |  |  |

| Tag      | Description                                                                                                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel  | See <u>Output Channel Tags on page 58</u> .                                                                                                                                                                                                                                                                                                                            |
| Pt00Data | The PtOOData bit is used to turn output point O either ON or OFF. A value of O is used to turn OFF the output point; a value of 1 is used to turn ON the output point.                                                                                                                                                                                                 |
| Run      | The Run bit is used to place the RFID block into run or program mode. A value of 0 is used for program mode; a value of 1 is used for run mode. When in program mode, the interface maintains the connection to the processor but does not execute commands. The discrete output point follows the mode of the processor and the Run bit, with the Run bit overriding. |

# **Output Channel Tags**

Expand the RFID\_1:Channel by clicking "+" to show that two channels exist (Channel[0] and Channel[1]). Expand the RFID\_1:Channel[0] by clicking "+". Each channel has the following tags:

| Scope: | 🛐 RFID_Sample_P 💌 Show: All Ta  | gs           |              |         | <ul> <li>Enter Name Filter</li> </ul> |
|--------|---------------------------------|--------------|--------------|---------|---------------------------------------|
| Name   |                                 | Value 🔶      | Force Mask 🗲 | Style   | Data Type                             |
| -      | RFID_1:D.Channel                | {}           | {}           |         | AB:56RF_IN_IP_Struct_Out:0:0[2]       |
|        |                                 | {}           | {}           |         | AB:56RF_IN_IP_Struct_Out:0:0          |
|        | ■ BFID_1:0.Channel[0].Address   | 0            |              | Decimal | INT                                   |
|        | ■-RFID_1:0.Channel[0].BlockSize | 0            |              | Decimal | INT                                   |
|        | ■-RFID_1:0.Channel[0].Command   | 0            |              | Decimal | INT                                   |
|        | ■-RFID_1:0.Channel[0].Data      | {}           | {}           | Decimal | INT[56]                               |
|        | ⊕-RFID_1:0.Channel[0].Length    | 0            |              | Decimal | INT                                   |
|        | -RFID_1:0.Channel[0].Reset      | 0            |              | Decimal | BOOL                                  |
|        | ■-RFID_1:0.Channel[0].Timeout   | 0            |              | Decimal | INT                                   |
|        | HFID_1:0.Channel[0].UIDHi       | 16#0000_0000 |              | Hex     | DINT                                  |
|        | +-RFID_1:0.Channel[0].UIDLow    | 16#0000_0000 |              | Hex     | DINT                                  |
|        | +-RFID_1:0.Channel[1]           | {}           | {}           |         | AB:56RF_IN_IP_Struct_Out:0:0          |

| Tag                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address                | The channel Address word is a 2-byte value that contains the address or block value within the RFID tag that the command executes on.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BlockSize              | The channel BlockSize word is a 2-byte value that stores the expected Block Size for the tag. Valid values are 0 bytes, 4 bytes, or 8 bytes per block. A value of 0 defaults to a Block Size of 4 bytes per block.                                                                                                                                                                                                                                                                                                                                                               |
| Command                | The channel Command word is a 2-byte value that stores the next command for the interface to process. The RFID interface executes the command once when this value changes. If a command must be repeated, then set the value to zero first and then change it again to the desired command. Use a MOV or COP instruction to store the command value in this tag. The allowable commands are listed in <u>Table 24 on page 59</u> .                                                                                                                                              |
| Data                   | Depending on the Data Format, the channel Data word is either an array of 2-byte values or an array of 1-byte values that total 112 bytes in length per channel. This array is used to store information that is directed to the RFID interface. Some commands, such as reading, do not require the use of this data field. Writing to tags uses this information with the length field to inform the RFID interface what values it must write. The size of this word allows the writing of up to 28 blocks of data to a tag at a time, with each block being 4 bytes in length. |
| Length                 | The channel length word is a 2-byte value that indicates the data length for specific commands. Upon completion of a command, this word is populated with the number of 16-bit words that are returned to the data field; at power-up this value must be 0.                                                                                                                                                                                                                                                                                                                      |
| Reset                  | The channel reset bit is used to command an RFID channel reset. A value of 0 indicates that the channel is not being commanded to reset; a value of 1 indicates a request to reset the channel.                                                                                                                                                                                                                                                                                                                                                                                  |
| Timeout <sup>(1)</sup> | This value determines how long the interface waits for a command response from the transceiver before indicating a message timeout. The default value is 0, which sets the timeout at 750 ms. You can enter a timeout value in milliseconds.                                                                                                                                                                                                                                                                                                                                     |
| UIDHi                  | The channel UID word is an 8-byte value that contains the UUID information for specific<br>commands that allows the command to be targeted to a specific tag in the field. Under<br>normal circumstances, this value is 0, which tells the RFID interface to perform an<br>action regardless of what tag it is. Any value other than 0 attempts to direct the<br>command to that specific tag. The UIDHi value contains bytes 01 and 67 of the UID.                                                                                                                              |
| UIDLow                 | The UIDLow value contains bytes 25 of the UID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

(1) A low timeout value can cause command failures by timing out before the command would otherwise have successfully completed.

| Value | Command                            | Description                                                                                               |
|-------|------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1     | Read Single Block                  | Reads one block of user data.                                                                             |
| 2     | Read Multiple Blocks               | Reads multiple blocks of user data from a tag.                                                            |
| 3     | Multi-tag Block Read               | Reads information from up to four tags.                                                                   |
| 4     | Read Byte                          | Reads bytes of user data from a tag.                                                                      |
| 5     | Start Continuous Read              | Initiates continuous read mode                                                                            |
| 6     | Stop Continuous Read               | Stops continuous read mode                                                                                |
| 8     | Teach Continuous Read              | Allows you to set the best time to start reading in continuous read mode automatically.                   |
| 10    | Write SingleBlock                  | Writes one block of user data.                                                                            |
| 11    | Write Multiple Blocks              | Writes multiple blocks of user data to a FRAM tag                                                         |
| 12    | Multi-tag Block Write              | Writes multiple blocks of user data to up to four tags.                                                   |
| 13    | Clear Multiple Bytes               | Clears multiple bytes of user data in a tag.                                                              |
| 14    | Write Byte                         | Writes bytes of data to a tag.                                                                            |
| 20    | Inventory                          | Counts the number of blocks in the field (up to four) and returns the UUID of the first tag in the field. |
| 31    | Read Transceiver Settings          | Read communication rate, Device ID and Retry Time.                                                        |
| 33    | Get Version Information            | Retrieves the firmware revision from the transceiver.                                                     |
| 34    | Get System Information             | Gets Info Flags,UUID, DSFID, AFI,Memory Size, and IC Reference from Tag                                   |
| 41    | Write AFI                          | Write the AFI byte to the tag                                                                             |
| 42    | Lock AFI                           | Locks the AFI byte from future changes.                                                                   |
| 43    | Write DSFID                        | Writes the DSFID byte to the tag.                                                                         |
| 44    | Lock DSFID                         | Locks the DSFID byte from future changes.                                                                 |
| 45    | Get Multiple Block Security Status | Retrieves that security status of multiple blocks within a tag.                                           |

#### Table 24 - Allowable Commands

# **Notes:**

# **Commands Summary**

## **RFID Commands**

This section provides a summary of the commands that the RFID transceiver supports. Detail of the commands can be found in <u>RSLogix 5000 Code Examples on page 73</u>. This guide assumes familiarity with RSLogix 5000°. The \*.ACD file must already be downloaded into the PLC and working properly.

Table 25 assumes the following:

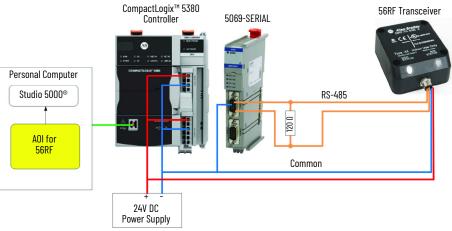
- You have configured the RSLogix 5000 Add-on Profile (AOP) with Data Format set to SINT.
- The RFID tag has blocks that are only 4 bytes each.
- The Universally Unique Identifier (UUID) is set to zero (unless specified).

A UUID can be specified in xx.0.Channel[0].UIDLow and xx.0.Channel[0].UIDHi for most commands to operate on a specific tag. If xx.0.Channel[0].UIDLow and xx.0.Channel[0].UIDHi are set to 0, the command operates on the first tag in the transceiver field. All other Output values must be set to 0 where not specified.

| Command                  | Description                                                                                                                                                                                 | Output<br>xx.O.Channel[O]                                                                                            | Input<br>xx.I.Channel[0]                                                                                                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                          | Option Flag O<br>Returns number of tags in field<br>Returns Universally Unique Identifier (UUID) of first tag in field                                                                      | Command = 20<br>Length = 0<br>Data[0] = 0                                                                            | Data[0] = # of tags<br>Data[29, 1017, 1825, 2633] = UUID of up<br>to four tags                                                |
| Inventory                | Option Flag 1<br>Returns number of tags in field<br>Returns Application Family Identifier (AFI) of first tag in field<br>Returns Universally Unique Identifier (UUID) of first tag in field | Command = 20<br>Length = 1<br>Data[0] = 1                                                                            | Data[0] = # of tags<br>Data[2, 12, 22, 32] = AFI of up to 4 tags<br>Data[411, 1321, 2431, 3441] = UUID of up<br>to four tags  |
| Read Single              | Option Flag O<br>Reads one block of user data from a tag                                                                                                                                    | Command = 1<br>Data[0] = 0                                                                                           | Data[03] = User data (4 bytes)                                                                                                |
| Block                    | Option Flag 1<br>Reads one block of user data from a tag<br>Returns security status of the block                                                                                            | Command = 1<br>Data[0] = 1                                                                                           | Data[03] = User data (4 bytes)<br>Data[4] = Security status                                                                   |
| Write Single<br>Block    | Writes one block of user data to a tag                                                                                                                                                      | Command = 10<br>Length =Block size<br>BlockSize = Block size<br>Data[01] = User data (4 bytes)                       | All data bytes are zero                                                                                                       |
| Lock Block               | Locks one block of user data, preventing writing                                                                                                                                            | Command = 40<br>UIDLow = UIDLow<br>UIDHi = UIDHi                                                                     | All data bytes are zero                                                                                                       |
| Dood Multiple            | Option Flag O<br>Reads multiple blocks of user data from a tag                                                                                                                              | Command = 2<br>Length = Number of blocks<br>Data[0] = 0                                                              | Data[03] = Block x<br>Data[47] = Block x+1                                                                                    |
| Read Multiple<br>Blocks  | Option Flag 1<br>Reads multiple blocks of user data from a tag<br>Returns security status of the blocks                                                                                     | Command = 2<br>Length = Number of blocks<br>Data[0] = 1                                                              | Data[03] = Block x<br>Data[4] = Security status of block x<br>Data[69] = Block x+1<br>Data[10] = Security status of block x+1 |
| Write Multiple<br>Blocks | Writes multiple blocks of user data to an FRAM tag                                                                                                                                          | Command = 11<br>Length = Number of bytes (multiple of 8)<br>BlockSize = Block size<br>Data[03] = User data (8 bytes) | All data bytes are zero                                                                                                       |

#### Table 25 - Commands

#### Table 25 - Commands (Continued)


| Command                                  | Description                                                                                                                                                             | Output<br>xx.O.Channel[0]                                                                                                               | Input<br>xx.I.Channel[0]                                                                                                                                               |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write AFI                                | Writes 1 byte of information into the AFI area that is contained within block -2                                                                                        | Command = 41<br>Length = 1<br>Data[0] = 00xx                                                                                            | All data bytes are zero                                                                                                                                                |
| Lock AFI                                 | Locks the 1 byte of information for the AFI area, preventing it from being modified                                                                                     | Command = 42<br>UIDLow = UIDLow<br>UIDHi = UIDHi                                                                                        | All data bytes are zero                                                                                                                                                |
| Write DSFID                              | Writes 1 byte of information in the DSFID area                                                                                                                          | Command = 43<br>Length = 1<br>Data[0] = 00xx                                                                                            | All data bytes are zero                                                                                                                                                |
| Lock DSFID                               | Locks the 1 byte of information for the DSFID area, preventing it from being modified                                                                                   | Command = 44<br>UIDLow = UIDLow<br>UIDHi = UIDHi<br>Data[0] = 00xx                                                                      | All data bytes are zero                                                                                                                                                |
| Get System<br>Information                | Returns the following system information of the tag:<br>Info_Flags<br>UUID<br>DSFID<br>AFI<br>Memory Size (Max Block Number +1 * Max Byte per Block +1)<br>IC Reference | Command = 34                                                                                                                            | Data[0] = Info_Flag<br>Data[2] = DSFID<br>Data[4] = AFI<br>Data[613] = UUID<br>Data[14] = Max Block Number Data[15] = Max<br>Byte Number in Block<br>Data[16] = IC Ref |
| Get Multiple<br>Block Security<br>Status | Retrieves the security status of multiple blocks within a tag                                                                                                           | Command = 45<br>Length = Number of blocks                                                                                               | Data[07] = UUID<br>Data[8] = Security status of block x<br>Data[10] = Security status of block x+1                                                                     |
| Read Byte                                | Option Flag O<br>Reads bytes of user data from a tag                                                                                                                    | Command = 4<br>Address = Starting byte<br>Length = Number of bytes to read<br>Data[0] = 0                                               | Data[0] = User data                                                                                                                                                    |
| Neau Dyte                                | Option Flag 1<br>Reads the UUID from a tag<br>Reads bytes of user data from a tag                                                                                       | Command = 4<br>Address = Starting byte<br>Length = Number of bytes to read<br>Data[0] = 1                                               | Data[07] = UUID<br>Data[8] = User data                                                                                                                                 |
| Write Byte                               | Writes bytes of user data to a tag                                                                                                                                      | Command = 14<br>Address = Starting byte<br>Length = Number of bytes to write<br>Data[0] = Start of User data                            | Data[07] = UUID                                                                                                                                                        |
| Clear Multiple<br>Bytes                  | Clears multiple bytes of user data in a tag                                                                                                                             | Command = 13<br>Address = Starting byte<br>Length = Number of bytes to clear<br>Data[0] = Cleared byte value                            | All data bytes are the cleared byte value                                                                                                                              |
| Multi-tag Block<br>Read                  | Reads the following information from up to four tags in the<br>field:<br>Number of tags<br>UUID<br>Multiple blocks of user data                                         | Command = 3<br>Address = First block to read<br>Length = Number of blocks to read for<br>each tag                                       | Data[0] = Number of tags<br>Data[29] = UUID of first tag<br>Data[10*] = User data of first tag<br>Data[**] = UUID of second tag<br>Data[**] = User data of second tag  |
| Multi-tag Block<br>Write                 | Writes multiple blocks of user data to up to four tags in the<br>field<br>Returns number of tags in the field<br>Retrieves UUID of tags                                 | Command = 12<br>Length = Number of bytes to write to<br>each tag<br>BlockSize = Block size<br>Data[0] = Block x<br>Data[47] = Block x+1 | Data[0] = Number of tags<br>Data[29] = UUID of first tag<br>Data[1017] = UUID of second tag<br>Data[1825] = UUID of third tag<br>Data[2633] = UUID of fourth tag       |
| Read Transceiver<br>Settings             | Retrieves the following information from the transceiver:<br>Communication rate<br>Device ID<br>Retry time                                                              | Command = 31                                                                                                                            | Data[01] = Device ID<br>Data[25] = Communication rate<br>Data[67] = Retry setting<br>Data[89] = Gain                                                                   |
| Get Version<br>Information               | Retrieves the firmware revision from the transceiver                                                                                                                    | Command = 33                                                                                                                            | Data = firmware revision                                                                                                                                               |

# **Add-On Instruction**

### Introduction

This chapter explains the proposed 56RF system with an Add-On Instruction (AOI) library applied that controls the 56RF transceiver module by Neo serial IO (Cat. No. 5069-SERIAL or 5094-SERIAL).

#### Figure 20 - Proposed 56RF System



This AOI is designed to work with the following configuration, other configurations are not considered and tested:

- Studio 5000 Logix Designer<sup>®</sup> version 28 or later
- 5069-SERIAL on Slot1 of backplane, also use CHO as RS-485 port
- 56RF tags

AOI code and Sample application code are considered user modified. The original AOI designer does not take responsibility for the application code of the final customer.

## **Supported Modules**

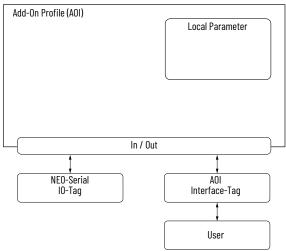
### **High-frequency Transceivers**

#### Table 26 - Supported High-frequency Transceiver

| Cat. No. <sup>(1)</sup> | Туре                                               |
|-------------------------|----------------------------------------------------|
| 56RF-TR-8090            | Rectangular 80 x 90 mm (3.1 x 3.5 in.) transceiver |
| 56RF-TR-4040            | Square 40 x 40 mm (1.6 x 1.6 in.) transceiver      |
| 56RF-TR-M18             | M18 cylindrical transceiver                        |
| 56RF-TR-M30             | M30 cylindrical transceiver                        |

(1) See <u>Approximate Dimensions on page 44</u> for transceiver dimensions.

# **High-frequency Tags**


Table 27 - Supported High-frequency Tags

| Cat. No.          | CHIP                 | Memory Size                                      | Block Size and<br>Number | Security Feature<br>(Privacy Mode) |
|-------------------|----------------------|--------------------------------------------------|--------------------------|------------------------------------|
| 56RF-TG-20        | ICODE-SLI (SL2ICS20) | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-30        | ICODE-SLI            | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-35HIR     | ICODE-SLI            | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-50        | ICODE-SLI            | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-50MOM     | ICODE-SLI            | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-50HT      | ICODE-SL2            | 128 Bytes                                        | 4 Bytes x32              | Yes                                |
| 56RF-TG-20-2KB    | FRAM (MB89R118C)     | 2k Bytes                                         | 8 Bytes x256             | No                                 |
| 56RF-TG-30-2KB    | FRAM (MB89R118C)     | 2k Bytes                                         | 8 Bytes x256             | No                                 |
| 56RF-TG-50-2KB    | FRAM (MB89R118C)     | 2k Bytes                                         | 8 Bytes x256             | No                                 |
| 56RF-TG-50-2KBMOM | FRAM (MB89R118C)     | 2k Bytes                                         | 8 Bytes x256             | No                                 |
| 56RF-TG-30-8KB    | FRAM (MB89R112)      | 9k Byte:<br>User - 8k Bytes<br>System - 1k Bytes | 32 Bytes x256 (User)     | No                                 |
| 56RF-TG-5050      | ICODE-SLIx           | _                                                | -                        | Yes                                |
| 56RF-TG-5486      | ICODE-SLI            | _                                                | -                        | Yes                                |
| 56RF-TG-5486SC    | ICODE-SLI            | _                                                | -                        | Yes                                |

**IMPORTANT** ISO15693 can support up to 8k Byte tag.

# **AOI Specification**

#### Figure 21 - AOI Interface



# **AOI Input Tags**

| Table 28 - RF_ | AOI_INT | ERFA | CE:C |
|----------------|---------|------|------|
|----------------|---------|------|------|

| Name        | Data Type | <b>Default Value</b> | Value Description                                                                                                                                                                                               |  |  |
|-------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ChOBaudRate | DINT      | -                    | The communication rate for Channel O from the RFID block to<br>the RFID transceiver is stored in this tag. Allowable<br>communication rates are 9600, 19200, 38400, and 115200.<br>The default value is 115200. |  |  |
| Ch1BaudRate | DINT      | _                    | The communication rate for Channel 1 from the RFID block to the RFID transceiver is stored in this tag. Allowable communication rates are 9600, 19200, 38400, and 115200.<br>The default value is 115200.       |  |  |

#### Table 29 - RF\_AOI\_INTERFACE:I

| Name     | Data Type                        | <b>Default Value</b> | Description                      |
|----------|----------------------------------|----------------------|----------------------------------|
| ChannelO | AB:56RF_IN_<br>AOI_Struct_In:I:0 | -                    | See <u>Table 30 on page 65</u> . |
| Channel1 | AB:56RF_IN_<br>AOI_Struct_In:I:0 | _                    | See <u>Table 30 on page 65</u> . |

#### Table 30 - AB:56RF\_IN\_AOI\_Struct\_In:I:0

| Name              | Data Type       | <b>Default Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Channel[0]: AB:56 | RF_IN_AOI_Struc | t_In:I:0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Busy              | BOOL            | 0                    | The channel Busy bit indicates the status of an RFID channe<br>A value of 0 indicates that the RFID channel is not executing<br>command. A value of 1 indicates that a command is in the<br>process of executing on that channel.                                                                                                                                                                                                                                  |  |
| ChError           | SINT            | 0                    | The channel ChError is a 1-byte word that contains the last<br>error code for that channel. A value of 0 indicates no error, a<br>value >0 indicates some error. See <u>Error Codes for RFID</u><br><u>Interface Block on page 129</u> for a list of the error codes.                                                                                                                                                                                              |  |
| Command           | INT             | 0                    | The channel command word is a 2-byte value that stores the last command that the channel received; at powerup this value must be 0. The allowable commands are listed in <u>Table 36 on page 68</u> .                                                                                                                                                                                                                                                              |  |
| ContReadMode      | BOOL            | 0                    | The channel ContReadMode bit indicates the status of<br>Continuous Read Mode for an RFID channel. A value of O<br>indicates that the RFID channel is not in continuous read<br>mode; a value of 1 indicates that the RFID channel is in<br>continuous read mode. While in Continuous Read Mode, the<br>interface ignores all other commands except a Stop<br>Continuous Read.                                                                                      |  |
| Counter           | INT             | 0                    | The channel counter word is a 2-byte value that increments<br>its value by 1 after the interface has completed execution of<br>command. This value rolls over to 0 after it counts to 65535<br>and starts again; at powerup this value must be 0.                                                                                                                                                                                                                  |  |
| Data              | SINT[160]       | 0                    | Depending on the Data Format, the channel Data word is an<br>array of either 2-byte values or an array of 1-byte values tha<br>total 160 bytes in length. This array is used to store<br>information that is returned from the RFID interface. Upon<br>completion a command, reply data is deposited in this array<br>and the length of the reply (in 16-bit word increments) is<br>placed within the associated length field; at powerup this<br>value must be 0. |  |
| Fault             | BOOL            | 0                    | The channel fault bit indicates the fault status of the RFID channel. A value of 0 indicates that the channel is operating normally; a value of 1 indicates that the channel does not detect a 56RF transceiver via the A0I requested command.                                                                                                                                                                                                                     |  |
| Length            | INT             | 0                    | The channel length word is a 2-byte value that indicates the data length for specific commands. Upon completion of a command, this word is populated with the number of 16-bit words that are returned to the data field; at powerup this value must be 0.                                                                                                                                                                                                         |  |
| Reset             | BOOL            | 0                    | The channel reset bit indicates the reset status of the RFI<br>channel. A value of 0 indicates that the channel is not in re<br>a value of 1 indicates that the channel has completed a re<br>If an unexpected error occurs, you can recover by setting<br>reset bit to 1.                                                                                                                                                                                         |  |
| ResetInProgress   | BOOL            | 0                    | The channel ResetInProg bit indicates the status of an RFIL<br>channel reset. A value of 0 indicates that the RFID channel<br>not currently undergoing a reset; a value of 1 indicates a re<br>in progress on that channel.                                                                                                                                                                                                                                        |  |
| TagPresent        | BOOL            | 0                    | The channel TagPresent bit indicates the status of a tag at th<br>RFID channel. A value of 0 indicates that there is not tag<br>present at the transceiver; a value of 1 indicates one or more<br>tags have been detected at the transceiver. This tag is<br>updated after the AOI command is executed.                                                                                                                                                            |  |

| Name Data Type     |                     | AOI                                                                        | Interface Block<br>(56RF-IN-IPS12, 56RF-IN-IPD22, and<br>56RF-IN-IPD22A) |
|--------------------|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Channel[0]: AB:56F | RF_IN_AOI_Struct_In | :1:0                                                                       |                                                                          |
| Busy               | BOOL                | 0, 1                                                                       | 0, 1                                                                     |
| ChError            | SINT                | 0, 3, 4, 5, 7, 16                                                          | 015                                                                      |
| Command            | INT                 | 1, 4, 10, 14, 20, 34, 41, 43, 99, 100<br>(See <u>Table 28 on page 64</u> ) | 16,8,1014,20,31,33,34,4045                                               |
| ContReadMode       | BOOL                | -                                                                          | 0, 1                                                                     |
| Counter            | INT                 | 065535                                                                     | 065535                                                                   |
| Data               | SINT[160]           | 0159                                                                       | 0159                                                                     |
| Fault              | BOOL                | 0, 1                                                                       | 0, 1                                                                     |
| Length             | INT                 | 0255                                                                       | 0255                                                                     |
| Reset              | BOOL                | 0, 1                                                                       | 0, 1                                                                     |
| ResetInProgress    | BOOL                | 0, 1                                                                       | 0, 1                                                                     |
| TagPresent         | BOOL                | 0, 1                                                                       | 0, 1                                                                     |

#### Table 31 - Support tag value of AB:56RF\_IN\_AOI\_Struct\_In:I:0

# AOI Output Tags

#### Table 32 - RF\_AOI\_INTERFACE:0

| Name     | Data Type                     | <b>Default Value</b> | Description                                          |
|----------|-------------------------------|----------------------|------------------------------------------------------|
| ChannelO | AB:56RF_IN_A0I_Struct_Out:0:0 | -                    | See <u>Table 33</u> .                                |
| Channel1 | AB:56RF_IN_A0I_Struct_Out:0:0 | -                    | See <u>Table 33</u> .                                |
| Run      | BOOL                          | 0                    | Set this bit to 1 before activating the AOI command. |

#### Table 33 - AB:56RF\_IN\_AOI\_Struct\_Out:0:0

| Name             | Data Type        | <b>Default Value</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel[0]: AB:  |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Address          | Address INT O ac |                      | The channel Address word is a 2-byte value that contains the address or block value within the RFID tag that the command executes on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BlockSize INT O  |                  | 0                    | The channel BlockSize word is a 2-byte value that stores the expected Block Size for the tag. Valid values are 0 bytes, 4 bytes, or 8 bytes per block. A value of 0 defaults to a Block Size of 4 bytes per block. When executing WriteSingleBlock, this setting is invalid and the target tag block size is reflected automatically after the WriteSingleBlock command is completed because AOI automatically commands ReadSingleBlock to get BlockSize information from the target tag.                                                                                                                |
| Command          | INT              | 0                    | The channel Command word is a 2-byte value that stores the next command for the interface to process. The AOI executes the command once when this value changes, and this value is cleared to 0 after completing the command. If a command must be repeated, then set the value to the desired command after waiting 0 clear. The allowable commands are listed in <u>Table 36</u> on page 68.                                                                                                                                                                                                           |
| Data SINT[112] O |                  | 0                    | Depending on the Data Format, the channel Data word is either<br>an array of 2-byte values or an array of 1-byte values that total<br>112 bytes in length per channel. This array is used to store<br>information that is directed to the RFID interface. Some<br>commands, such as reading, do not require the use of this data<br>field. Writing to tags uses this information with the length field<br>to inform the RFID interface what values it must write. The size<br>of this word allows the writing of up to 28 blocks of data to a tag<br>at a time, with each block being 4 bytes in length. |
| Length INT       |                  | 0                    | The channel length word is a 2-byte value that indicates the data length for specific commands. Upon completion of a command, this word is populated with the number of 16-bit words that are returned to the data field; at powerup this value must be 0.                                                                                                                                                                                                                                                                                                                                               |

| Name    | Data Type | <b>Default Value</b>                                                                                                                                                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reset   | BOOL      | 0                                                                                                                                                                                                                                      | The channel reset bit is used to command an RFID channel reset. A value of 0 indicates that the channel is not being commanded to reset; a value of 1 indicates a request to reset the channel.                                                                                                                                                                                                                                  |
| Timeout | INT       | 0<br>This value determines how long the interface waits for<br>command response from the transceiver before indica<br>message timeout. The default value is 0, which sets th<br>at 750 ms. You can enter a timeout value in millisecon |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UIDHi   | DINT      | 0                                                                                                                                                                                                                                      | The channel UID word is an 8-byte value that contains the UUID information for specific commands that allows the command to be targeted to a specific tag in the field. Under normal circumstances, this value is 0, which tells the RFID interface to perform an action regardless of what tag it is. Any value other than 0 attempts to direct the command to that specific tag. The UIDHi value contains bytes 47 of the UID. |
| UIDLow  | DINT      | 0                                                                                                                                                                                                                                      | The UIDLow value contains bytes 03 of the UID.                                                                                                                                                                                                                                                                                                                                                                                   |

Table 33 - AB:56RF\_IN\_AOI\_Struct\_Out:0:0 (Continued)

#### Table 34 - Support tag value of AB:56RF\_IN\_AOI\_Struct\_Out:0:0

| Name             | Data Type                                 | AOI                                   | Interface Block<br>(56RF-IN-IPS12, 56RF-IN-IPD22, and<br>56RF-IN-IPD22A) |  |  |  |  |  |
|------------------|-------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Channel[0]: AB:5 | Channel[0]: AB:56RF_IN_AOI_Struct_Out:0:0 |                                       |                                                                          |  |  |  |  |  |
| Address          | INT                                       | 032767                                | 032767                                                                   |  |  |  |  |  |
| BlockSize        | INT                                       | 0, 4, 8, 32                           | 0, 4, 8                                                                  |  |  |  |  |  |
| Command          | INT                                       | 1, 4, 10, 14, 20, 34, 41, 43, 99, 100 | 16, 8, 1014, 20, 31, 33, 34, 4045                                        |  |  |  |  |  |
| Data             | SINT[112]                                 | 0111                                  | 0111                                                                     |  |  |  |  |  |
| Length           | INT                                       | 0255                                  | 0255                                                                     |  |  |  |  |  |
| Reset            | BOOL                                      | 0, 1                                  | 0, 1                                                                     |  |  |  |  |  |
| Timeout          | INT                                       | 0750                                  | 0750                                                                     |  |  |  |  |  |
| UIDHi            | DINT                                      | 47                                    | 47                                                                       |  |  |  |  |  |
| UIDLow           | DINT                                      | 03                                    | 03                                                                       |  |  |  |  |  |

# **AOI Interface Tags**

<u>Table 35</u> defined tags are necessary to use target AOI on your system. These tags are automatically defined after importing the AOI library (L5X).

Table 35 - AOI Interface Tags on Controller Tags

| Name               | Data Type | <b>Default Value</b> | Description                                                                                                                            |
|--------------------|-----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Controller Tags    |           |                      |                                                                                                                                        |
| AOI_Main           | AOI_Main  | -                    | AOI library tag                                                                                                                        |
| DATA_TOTAL         | DINT      | 0                    | Tag to store calculated checksum (FCS). Do not change value by user program.                                                           |
| ReadData_Length    | SINT      | 0                    | Tag to store block size of RFID tag that the<br>ReadSingleBlock command checks. Do not change value<br>by user program.                |
| ReadSingleBlock_DN | BOOL      | 0                    | Tag that indicates completion of pre-processing<br>command for WriteSingleBlock. Do not change value by<br>user program.               |
| RUNG               | LINT      | 0                    | Tag that indicates step of AOI process. While executing AOI, this tag is changed to other than O. Do not change value by user program. |
| Time1              | DINT      | 500                  | Tag that indicates the wait time limit from command to response. Do not change value by user program.                                  |
| Time2              | DINT      | 10                   | Tag that indicates the wait time from response to error judgment. Do not change value by user program.                                 |

# **Support Command**

#### Table 36 - Support Command

| Value | Command                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AOI Support | ISO15693<br>Command | Device Control<br>Command | Macro Command |
|-------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|---------------------------|---------------|
| 1     | Read Single Block                     | Reads one block of user data.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes         | Yes (Optional)      | -                         | -             |
| 2     | Read Multiple Blocks                  | Reads multiple blocks of user data from a tag.                                                                                                                                                                                                                                                                                                                                                                                                                       | _           | Yes (Optional)      | -                         | -             |
| 3     | Multi-tag Block Read                  | Reads information from up to four tags.                                                                                                                                                                                                                                                                                                                                                                                                                              | -           | -                   | -                         | Yes           |
| 4     | Read Byte                             | Reads bytes of user data from a tag.                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes         | -                   | -                         | Yes           |
| 5     | Start Continuous Read                 | Initiates continuous read mode                                                                                                                                                                                                                                                                                                                                                                                                                                       | -           | -                   | -                         | -             |
| 6     | Stop Continuous Read                  | Stops continuous read mode                                                                                                                                                                                                                                                                                                                                                                                                                                           | -           | -                   | -                         | -             |
| 8     | Teach Continuous Read                 | Allows you to set the best time to start reading in continuous read mode automatically.                                                                                                                                                                                                                                                                                                                                                                              | -           | -                   | -                         | -             |
| 10    | Write Single Block                    | Writes one block of user data.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes         | Yes (Optional)      | -                         | -             |
| 11    | Write Multiple Blocks                 | Writes multiple blocks of user data to a FRAM tag                                                                                                                                                                                                                                                                                                                                                                                                                    | _           | Yes (Optional)      | -                         | -             |
| 12    | Multi-tag Block Write                 | Writes multiple blocks of user data to up to four tags.                                                                                                                                                                                                                                                                                                                                                                                                              | -           | -                   | -                         | Yes           |
| 13    | Clear Multiple Bytes                  | Clears multiple bytes of user data in a tag.                                                                                                                                                                                                                                                                                                                                                                                                                         | -           | -                   | -                         | Yes           |
| 14    | Write Byte                            | Writes bytes of data to a tag.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes         | -                   | -                         | Yes           |
| 20    | Inventory                             | Counts the number of blocks in the field (up to four)<br>and returns the UUID of the first tag in the field.                                                                                                                                                                                                                                                                                                                                                         | Yes         | Yes (Mandatory)     | _                         | _             |
| 31    | Read Transceiver Settings             | Read communication rate, Device ID and Retry Time.                                                                                                                                                                                                                                                                                                                                                                                                                   | -           | -                   | Yes                       | -             |
| 33    | Get Version Information               | Retrieves the firmware revision from the transceiver.                                                                                                                                                                                                                                                                                                                                                                                                                | -           | -                   | Yes                       | -             |
| 34    | Get System Information                | Gets Info Flags, UUID, DSFID, AFI, Memory Size, and IC<br>Reference from Tag                                                                                                                                                                                                                                                                                                                                                                                         | Yes         | Yes (Optional)      | _                         | _             |
| 40    | Lock Block                            | Locks blocks of memory.                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           | Yes (Optional)      | -                         | -             |
| 41    | Write AFI                             | Write the AFI byte to the tag.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes         | Yes (Optional)      | -                         | -             |
| 42    | Lock AFI                              | Locks the AFI byte from future changes.                                                                                                                                                                                                                                                                                                                                                                                                                              | _           | Yes (Optional)      | -                         | -             |
| 43    | Write DFSID                           | Writes the DSFID byte to the tag.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes         | Yes (Optional)      | -                         | -             |
| 44    | Lock DFSID                            | Locks the DSFID byte from future changes.                                                                                                                                                                                                                                                                                                                                                                                                                            | _           | Yes (Optional)      | -                         | -             |
| 45    | Get Multiple Block Security<br>Status | Retrieves that security status of multiple blocks within a tag.                                                                                                                                                                                                                                                                                                                                                                                                      | -           | Yes (Optional)      | _                         | -             |
| 46    | Change BaudRate                       | Change communication rate of internal serial<br>communication. The Write Setting (CMD: 0x64) and<br>Read Setting commands (CMD: 0x63) accomplish this<br>operation. When sending the Write Setting command,<br>setting any communication rate for<br>RF_AOI_INTERFACE_C.ChOBaudRate. After changing to<br>the communication rate set in<br>RF_AOI_INTERFACE_C.ChOBaudRate, it is necessary to<br>match the communication rate of 5069-SERIAL from<br>the properties. | Yes         | _                   | Yes                       | _             |

# **Error Codes**

See <u>Error Codes for RFID Interface Block on page 129</u> for more information.

**Environment Setup** 

# **5069-SERIAL Configuration**

**IMPORTANT** Configure the 5069-SERIAL as shown in this section. If Importing the AOI before the following settings, the data type of the tag that is required for this library is not defined and an error occurs.

#### Figure 22 - Module Setting (1 of 5)

|      |   | D 0 11     |
|------|---|------------|
| Modu | e | Definition |
|      |   |            |

| neral | General            |                   |   |
|-------|--------------------|-------------------|---|
|       | Series:            | Α ~               |   |
|       | Revision:          | 2 ~ 001 🜩         |   |
|       | Electronic Keying: | Compatible Module | ~ |
|       | Connection:        | Data              |   |
|       | Channel O:         | Generic ASCII     |   |
|       | Channel 1:         | Disabled          |   |

#### Figure 23 - Module Setting (2 of 5)

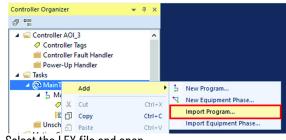
| General<br>Connection<br>Module Info | Connection    |      |                                         |
|--------------------------------------|---------------|------|-----------------------------------------|
| Generic ASCII Receive                |               | Name | Requested Packat Interval (RPI)<br>(ms) |
|                                      | ChannelOASCII |      | 2.0 + 2.0 - 750.0                       |

#### Figure 24 - Module Setting (3 of 5)

| Module Properties: Local:3 (506                                | 9-SERIAL 1.001) ×                 |                    |             |
|----------------------------------------------------------------|-----------------------------------|--------------------|-------------|
| General<br>Connection<br>Module Info                           | Channel O                         |                    |             |
| - Channel 0<br>Generic ASCII Receive<br>Generic ASCII Transmit | Baud Rate:                        | 38400 ~            |             |
| Generic ASCII Receive<br>Generic ASCII Transmit                | Data Bits:<br>Parity:             | 8 ~<br>Even ~      |             |
|                                                                | Stop Bits:                        | 1 ~                |             |
|                                                                | Serial Media:<br>Duplex:          | RS-485 ~           |             |
|                                                                |                                   | Continuous Carrier |             |
|                                                                | RTS Send Delay:<br>RTS Off Delay: |                    | x20 ms      |
|                                                                | DCD Wait Delay:                   |                    | x20 ms<br>s |

Figure 25 - Module Setting (4/5)

| Module Properties: Local:3 (506     General     Connection                                                               | Channel 0 - Generic                                                                                                                                                   | c ASCII Receive                                                                                                                                                            |                                                            |                       |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|
| Onnection<br>Ohnnel0<br>Generic ASDI Transmit<br>Generic ASDI Transmit<br>Generic ASDI Transmit<br>Generic ASDI Transmit | Swap Mode:<br>Handshake Mode:<br>Message Timeout:<br>Pad Character:<br>Start Mode:<br>Start Delmiter:<br>Termination Mode:<br>Termination Delmiter: 1:<br>Diagnostics | No Change     V       Master/Slave handshake     V       1     ms       SFF     Ignore Start Delimiter       \$00     V       Ignore End Delimiter     V       \$00     2: | XON/XOFF<br>Echo Mode<br>Delete Mode:<br>Read Buffer Size: | Ignore v<br>256 Sytes |


#### Figure 26 - Module Setting (5/5)

| Module Properties: Local:3 (506                                                              | 9-SERIAL 1.001) ×         |                        |
|----------------------------------------------------------------------------------------------|---------------------------|------------------------|
| General<br>Connection<br>Module Info                                                         | Channel 0 - Generic A     | ASCII Transmit         |
| <ul> <li>Channel 0</li> <li>Generic ASOII Receive</li> <li>Generic ASOII Transmit</li> </ul> | Swap Mode:                | No Change V            |
| Generic ASOII Receive                                                                        | Termination Mode:         | Ignore End Delimiter V |
| Generic ASCII Transmit                                                                       | Termination Delimiter: 1: | \$00 2: \$00           |
|                                                                                              | Diagnostics               |                        |

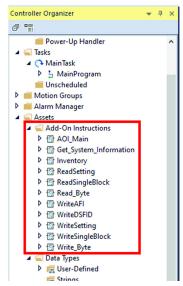
## **AOI Installation**

Import the L5K file that includes the AOI into the setup environment via the Studio 5000 environment.

1. Right-click Main Task and select Import Program.



2. Select the L5X file and open.


| 💰 Import Progr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | am                  |                                  |                         | ×             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|-------------------------|---------------|
| Look in:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A01                 | ~                                | G 🤌 📂 🖽                 | •             |
| クイック アクセス                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 名前<br>占 NeoSerialAC | ^<br>I_for56RF_v00.L5X           | 更新日時<br>2022/08/26 13:4 | 種類<br>8 Logix |
| デスクトップ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                  |                         |               |
| ライブラリ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                  |                         |               |
| PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                  |                         |               |
| マンプログロン (1000) マンプログロ (1000) マンプログロン (1000) マンプログロン (1000) マンプログロ (1000) マンプログ (1000) マンプログロ (1000) マンプログ (1000) マンプ (1000) マンプログ (1000) マンプ (10000) マンプ (10000) マンプログ (10000) マンプ (1000) マンプ (10000) マン (1000) マンプロ |                     |                                  |                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <                   |                                  |                         | >             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | File name:          | NeoSerialAOI_for56RF_v00L5X      | ~                       | Open          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Files of type:      | Logix Designer XML Files (* L5X) | ~                       | Cancel        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                  |                         | Help          |

3. Select OK on the Import Configuration screen.

**IMPORTANT** When importing, if Overwrite for Operation is selected, the existing project is overwritten. Select Use Existing to keep the existing project.

|   | Find:<br>Find Within: Final Name                                                                      | ~                | Find/Replace                                                 |   |                   |  |
|---|-------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------|---|-------------------|--|
|   | Content:                                                                                              | Configure Prog   | ram Dronarties                                               |   |                   |  |
|   | Programs<br>MainProgram                                                                               | Import Name:     | MainProgram                                                  |   |                   |  |
|   | <ul> <li>Parameters and Local Tage</li> <li>Routines</li> <li>Programs</li> <li>References</li> </ul> | gs<br>Operation: | Overwrite<br>Overwrite<br>Use Existing                       | ~ |                   |  |
| 1 | → ✓ Tags<br>→ Add-On Instructions                                                                     | Final Name:      | MainProgram                                                  | ~ | Collision Details |  |
|   | Connections<br>Frrors/Warnings*                                                                       | Description:     |                                                              | ^ |                   |  |
|   |                                                                                                       |                  |                                                              | ~ |                   |  |
|   |                                                                                                       | Schedule In:     | MainTask                                                     | ~ |                   |  |
|   |                                                                                                       |                  | Preserve scheduling for child<br>programs that already exist |   |                   |  |
|   |                                                                                                       | Parent:          | <none></none>                                                | ~ |                   |  |
|   |                                                                                                       | Inhibit Progr    | am                                                           |   |                   |  |
|   |                                                                                                       | Assigned Rou     | tines                                                        |   |                   |  |
|   |                                                                                                       | Main:            | MainRoutine                                                  |   |                   |  |
|   |                                                                                                       | Fault:           | <none></none>                                                |   |                   |  |

If the import is successful, it is reflected in all Controller Tags, MainProgram, and Add-On Instructions.



**Important Notes** 

### **ADDR Setting Restriction**

Do not change the ADDR value from default value (0x01), because the M18 and M30 cylindrical transceivers do not support an ADDR value change from default.

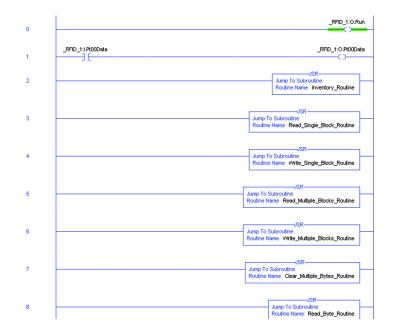
#### Initial State of R/W Status Indicator

After the power cycle of the high-frequency transceiver, the R/W status indicator keeps flashing red/green until the AOI command sends the first command. The AOI sends a command to the high-frequency transceiver only when you explicitly demand it.

### **AOI Sample Code Precondition**

Sample application program for this AOI designed to use with following condition

- 5069 CompactLogix as PLC Controller
- 5069-SERIAL CHO as RS-485 interface, which is installed on Slot 1 of the 5069 Controller backplane


# **RSLogix 5000 Code Examples**

This chapter contains examples of routines that run in the RSLogix 5000<sup>®</sup> program.

The examples are written for an RF transceiver that is connected to the "O" connector on the RF interface block. A momentary switch is connected to the Digital Input connector. The switch is used to enable the routine to allow you to repeat the routine easily.

In the examples, the RFID block is identified as "\_RFID1"

# **Main Routine**



A partial listing of the Main Routine is shown in the <u>Example Command Routines - Overview</u>. The Main Routine sets the run bit. In program mode, the run bit is 0; and 1 for run mode. The remaining blocks jump to the various subroutines to execute the commands. In Rung 1, the momentary switch turns on Digital Output 0, which turns on a status indicator to confirm that you have pressed the momentary switch.

Many of the example routines (not the Main Routine) use the same Ladder Logic. <u>Rung O on</u> page 74...<u>Rung 4 on page 75</u> explain the Ladder Logic.

### Example Command Routines - Overview

#### Rung O

Rung O initiates the routine. A sensor or momentary switch, which is connected to the input connection of the RFID interface block, senses that an object (with an RFID tag attached) is approaching and enables the execution of the read routine. The sensor is the Examine If Closed (XIC) bit labeled \_RFID\_1:I:PtOOData. When the sensor detects the object, the instruction latches ON.

#### Rung 1

Rung 1 initializes the output image table in preparation for command. Execution begins when the transceiver is not already busy reading a tag and a tag is present in the RF field.

This XIC instruction is latched ON by the sensor in Rung O.

RFID\_1:1:Channel[0]Busy – This Examine If Open (XIO) instruction prevents the rung from executing when the transceiver is busy executing a command.

RFID\_1:1:Channel[0].TagPresent – This XIC instruction closes when a tag is present in the RF field of the transceiver that is connected to Channel[0].

MOV variable to RFID\_1:0:Channel[0]:variable – Moves data from a Controller tag to the output image table variable.

MOV 0 to RFID\_1:0:Channel[0].Command – Initializes the output command to 0.

**IMPORTANT** The transceiver executes a command when the command value changes. When repeating a command, set the command value to 0 first and then reset it to the same desired value.

Start – Latches a tag that indicates the function has started.

Unlatch – Unlatches (turns OFF) the instruction from Rung O and readies the routine for the next RFID tag.

#### Rung 2

Start – With the output channel properly initialized, the Start bit enables the rung to begin execution.

EQU RFID\_1:1:Command[0].Command =0 – When an output command is updated, the interface block returns that command back to the input command. If the input command is zero (it was set in Rung 1), then the EQU output goes HI and enables the subsequent MOV command.

MOV x to RFID\_1:0:Command[0].Command – Moving a nonzero value into the output command byte instructs the RFID block to execute the command.

#### Rung 3

Rung 3 verifies that another command is not initiated while a command is busy.

Start – The Start bit enables the rung to begin execution.

RFID\_1:1:Channel[0].Busy – When the command begins execution, the Busy bit goes HI. This contact closes and the rung is executed.

InProgress – When command begins execution, an In-Progress bit is latched ON.

Start – This contact is opened, as the command has transitioned from start to busy.

#### Rung 4

Rung 4 confirms the completion of the command, as the interface block moves a value into the input channel command location.

InProgress - This contact closes when the read command begins execution.

RFID\_1:I:Channel[0].Busy – This contact is open while the command is in process.

EQU RFID\_1:I:Channel[0].Command – Upon completion of the command the interface block copies the value from output command to the input command. If the input command value equals the value of the command, the EQU output goes HI.

InProgress – This bit is unlatched when the command is successfully completed. The routine is now ready for the next RFID tag or other routine.

**Clear Multiple Bytes**The Clear Multiple Bytes command clears multiple bytes of user data in an RFID tag. You can specify the number of bytes to clear and the address from which to begin. Similar to a "copy" command, it copies the value that you specify in the output data image Data[0] location to the addresses you specify.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 13
- b. xx:0.Channel[0].Address = starting address
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0 (or value that is used to clear the byte)
- e. xx:0.Channel[0].Length = the number of bytes to clear
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length data, the value that is used to clear the fields and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table. The value to be copied is initially stored in the controller tag CMB\_Data. In the following example, CMB\_Data is set to 0, but you can set this value to be any valid SINT value.

|      |                                                                                                          |                                                                           | Clear_Multi_Bytes           |
|------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|
|      | Clear_Julii_BytesRFID_t1:Channel[0]BusyRFID_t1:Channel[0]TegPresent                                      | Move<br>Source Address<br>2 •                                             | Clear_Muti_Bytes_Start      |
|      |                                                                                                          | Dest _RPD_1:0.Channel[0].Address 0 +                                      | _                           |
|      |                                                                                                          | 4 +<br>Dest_RFD_1:0.Channet[0]Length_0 +                                  |                             |
|      |                                                                                                          | Move<br>Source CMB_Data<br>0 +<br>Dest _RFID_1:0.Channe[0].Data[0]<br>0 + | _                           |
|      |                                                                                                          | Move<br>Source 0<br>Dest _RFID_1:0.Channe[0].Command<br>0 €               |                             |
|      | Clew_MAIL_Byter_Start ECU.<br>Clew_MAIL_Byter_Start Source A _FPTD_11Channel(I)_Command 0+<br>Source B 0 | Move<br>Sour<br>Dest                                                      |                             |
|      | Clear_Judii Bytes_StartRPD_11.Channel0]Busy<br>                                                          |                                                                           | Clear_Muti_Bytes_hProgress  |
|      | Clear_Mall_Bytes_thehogreesRFD_t10.ternel(0)BuryEarl<br>5 b b b b b b b b b b b b b b b b b b b          | et[0] Command<br>0 +<br>13                                                | Clear_MuRi_Bytes_InProgress |
| ind) |                                                                                                          |                                                                           |                             |

To demonstrate the results, the Read Byte command was executed on an RFID tag. The data in this tag was a simple list of numbers starting from 1. The counter is 31.

| RFID_1:I.Channel         | {                       | } {} |         | AB:56RF_IN |
|--------------------------|-------------------------|------|---------|------------|
| ERFID_1:I.Channel[0]     | {                       | } () |         | AB:56RF_IN |
|                          |                         | 0    | Decimal | BOOL       |
|                          |                         | 0    | Decimal | SINT       |
|                          |                         | 4    | Decimal | INT        |
|                          |                         | 0    | Decimal | BOOL       |
|                          |                         | 7    | Decimal | INT        |
| RFID_1:I.Channel[0].Data | {                       | } () | Decimal | SINT[160]  |
|                          | •                       | 1    | Decimal | SINT       |
|                          |                         | 2    | Decimal | SINT       |
|                          | clearing, the data is a | 3    | Decimal | SINT       |
|                          | ential list of numbers  | 4    | Decimal | SINT       |
|                          |                         | 5    | Decimal | SINT       |
|                          |                         | 6    | Decimal | SINT       |
|                          |                         | 7    | Decimal | SINT       |
| ■                        |                         | 8    | Decimal | SINT       |

The Clear Multiple Byte command is executed successfully as the ChError = 0 and all data bytes are zero. The counter increments to 32.

| RFID_1:I.Channel[0]          | {}                 | {} |         | AB:56RF_I |
|------------------------------|--------------------|----|---------|-----------|
|                              | 0                  |    | Decimal | BOOL      |
| ⊞RFID_1:I.Channel[0].ChError | No errors 0        |    | Decimal | SINT      |
|                              | 13                 |    | Decimal | INT       |
|                              | 0                  |    | Decimal | BOOL      |
| ■RFID_1:I.Channel[0].Counter | 32                 |    | Decimal | INT       |
| ERFID_1:I.Channel[0].Data    | ()                 | {} | Decimal | SINT[160] |
|                              | 0                  |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |
|                              | All data 0         |    | Decimal | SINT      |
|                              | addresses show 0 0 |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |
|                              | 0                  |    | Decimal | SINT      |

The tag is read again (command = 4) to confirm the clearing. Data bytes 2...4 are successfully set to 0.

| RFID_1:I.Channel[0]              | {            | .} | {} |         | AB:56RF_I |
|----------------------------------|--------------|----|----|---------|-----------|
| RFID_1:I.Channel[0].Busy         |              | 0  |    | Decimal | BOOL      |
|                                  |              | 0  |    | Decimal | SINT      |
|                                  |              | 4  |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode |              | 0  |    | Decimal | BOOL      |
|                                  | 33           |    |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data         | {}           |    | {} | Decimal | SINT[160] |
|                                  | 1            |    |    | Decimal | SINT      |
|                                  |              | 2  |    | Decimal | SINT      |
|                                  | 1            | 0  |    | Decimal | SINT      |
|                                  |              | 0  |    | Decimal | SINT      |
|                                  | Data Cleared | 0  |    | Decimal | SINT      |
|                                  |              | 0  |    | Decimal | SINT      |
|                                  | 7            |    |    | Decimal | SINT      |
| ERFID_1:I.Channel[0].Data[7]     |              | 8  |    | Decimal | SINT      |

# Get Multiple Block Security Status

The Get Multiple Block Security Status command retrieves the security status of multiple blocks within a tag. It also displays the Universally Unique Identifier (UUID) of the RFID tag.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 45
- b. xx:0.Channel[0].Address = the first block to read
- c. xx:0.Channel[0].Block = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = the number of blocks to read.
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length data, the Data[0] value that is used to clear the fields and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table. The starting address is block 0. The command reads 28 blocks (all blocks of this RFID tag).

| ][                        | le_Get_Security                                 |                                              |                                               |                                    | Get_Security_S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Get_Security_Status _R    | FID_1:I.Channel[0]BusyRFID_1:I.C                | hannel(0).TagPresent                         | Move<br>Source<br>Dest _RFID_1:0.Channel[0]   | Address<br>0 ←                     | Cet_Security_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status_Status |
|                           |                                                 | _                                            | Move<br>Source<br>Dest _RFID_1:0.Channel[     | Length<br>28 ←<br>0] Length<br>0 ← |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                                                 |                                              | Move<br>Source<br>Dest _RFID_1:0.Channel(     | 0<br>1).Dats(0)<br>0 ←             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                                                 |                                              | Move<br>Source<br>Dest _RFID_1:0.Channel[0].0 | 0<br>Command<br>0 <del>¢</del>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Get_Security_Status_Start | Equal<br>Source A _RFID_11.Channe(C<br>Source B | )].Command<br>0 ←<br>0                       |                                               | Move<br>Source<br>Dest _RFID_1:    | MOV<br>4<br>O.Channel(0).Comman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Get_Security_Status_Start | _RFID_1:I.Channel[0].Busy                       |                                              |                                               |                                    | L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Get_Security_Status_InPro | gressRFID_1:1.Channel(0).Busy<br>=;/            | Equal<br>Source A _RFID_1:I.Char<br>Source B | nnel[0].Command<br>0 ←<br>45                  | Get_                               | U)-<br>Security_Status_InPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           |                                                 | L                                            |                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

The following example shows the security status for the first three blocks. Blocks 0 and 2 are locked. Block 1 is not locked.

| Get_Security_Status _RFID_1:1.Channel[0].Busy _RFID_1:1.Channel[0].TagPresent | Move                                     | Get_Security_Status_                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | Source Address                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | 0 ←                                      | Get_Security_S                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                               | Dest _RFID_1:O.Channel[0].Address<br>0 ← | ()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()())()()()()()())()()())()()())()())()_() |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | MOV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Move                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               | Source Length 28 +                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Dest _RFID_1:O.Channel[0].Length         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | 0 ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Move                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Source 0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Dest _RFID_1:O.Channel[0].Data[0]        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | MOV                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Move<br>Source 0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | Dest _RFID_1:O.Channel[0].Command        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               | 0 ←                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Get_Security_Status_Start EQU-                                                |                                          | MOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Equal Source A _RFID_1:I.Channel(0).Command                                   |                                          | tove<br>ource                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 4                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source B 0                                                                    | 0                                        | est _RFID_1:O.Channel[0].Com                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                               | L                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Get_Security_Status_Start _RFID_1:I.Channel[0].Busy                           |                                          | Get_Security_Status_InProj                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                               |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               |                                          | Get_Security_Status_                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                               |                                          | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Get_Security_Status_InProgress _RFID_1:I.Channel(0).BusyEQI                   | U                                        | Get_Security_Status_In                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Equal                                                                         |                                          | (U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source A _RFID_1:I.                                                           | Channel[U].Command                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source B                                                                      | 45                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

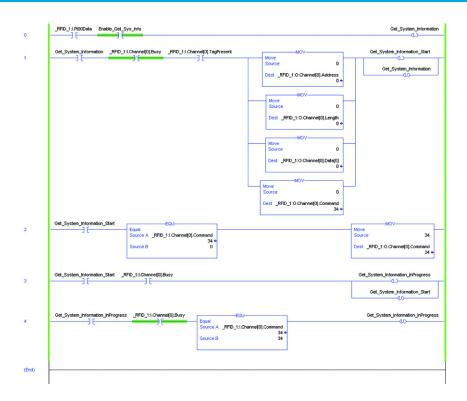
The following information is displayed:

- xx:I.Channel[0].Data[0...7] = UUID
- xx:I.Channel[0].Data[8...9] = Security status of block x
- xx:I.Channel[0].Data[10...11] = Security status of block x+1

### **Get System Information**

The Get System Information command returns the following RFID tag information:

- Info\_Flag
- Data Storage Format Identifier (DSFID)
- Application Family Identifier (AFI)
- Universally Unique Identifier (UUID)
- Memory Size
- IC Reference


Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 34
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length data, the Data[0] value that is used to clear the fields and sets the command value to 0. Because the address, length and data[0] can only be 0, the source in the MOV instruction can be set to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.



The Info Flag contains data that is used to determine what parameters are passed back.

The DSFID, AFI, and UUID follow.

The tag being read was catalog number 56RRF-TG-30. This tag has 28 blocks. The maximum block number is 27, as the first block is 0. Each block has 4 bytes. The maximum byte number is 3, as the first byte is 0.

The IC Ref is the last byte reported.

| RFID_1:I.Channel[0]                   |                    | {}    | {} |         | AB:56RF_I |
|---------------------------------------|--------------------|-------|----|---------|-----------|
|                                       |                    | 0     |    | Decimal | BOOL      |
|                                       |                    | 0     |    | Decimal | SINT      |
| ERFID_1:I.Channel[0].Command          |                    | 34    |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode      |                    | 0     |    | Decimal | BOOL      |
|                                       |                    | 142   |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data              |                    | {}    | {} | Decimal | SINT[160] |
| EBFID_1:I.Channel[0].Data[0]          | Info Flag          | 15    |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[1]          |                    | 0     |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[2]          | DSFID              | 68    |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[3]          |                    | 0     |    | Decimal | SINT      |
|                                       | AFI 58             |       |    | Decimal | SINT      |
|                                       | 0                  |       |    | Decimal | SINT      |
|                                       |                    | 16#e9 |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[7]          | UID Low            | 16#04 |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[8]          |                    | 16#e6 |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[9]          |                    | 16#5b |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[10]         |                    | 16#00 |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[11]         | UID Hi             | 16#01 |    | Hex     | SINT      |
| EBFID_1:I.Channel[0].Data[12]         |                    | 16#04 |    | Hex     | SINT      |
| EBFID_1:I.Channel[0].Data[13]         |                    | 16#e0 |    | Hex     | SINT      |
| EBFID_1:I.Channel[0].Data[14]         | Max Block Numb     | er 27 |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[15]     Max | Byte Number in Blo | ck 3  |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[16]         | IC Ref             | 1     |    | Decimal | SINT      |
| EBFID_1:I.Channel[0].Data[17]         |                    | 0     |    | Decimal | SINT      |

# **Get Version Information**

The Get Version Information command retrieves the firmware revision information from the transceiver.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 33
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0
- i. xx:0.Channel[0].UIDHi = 0

### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length data, the Data[0] value that is used to clear the fields and sets the command value to 0. Because the address, length and data[0] can only be 0, the source in the MOV instruction can be set to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

| _RFID_1:I.Pt00Data Ei  | hable_Get_Version_Into                             |                                                |                                             |                                   | Get_Ve                                  |
|------------------------|----------------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------------|
| Get_Version _RFID_1    | :I.Channel[0].Busy                                 |                                                | MOV-                                        |                                   | Get_Version_Ste                         |
|                        |                                                    |                                                | Move<br>Source<br>Dest _RFID_1:0.Channel(0  | 0<br>IJ.Address<br>0 <del>•</del> | (L)<br>Get_Versio                       |
|                        |                                                    | _                                              | Move<br>Source<br>Dest _RFID_1:0.Chenne     | 0<br>(0).Length<br>0 ←            |                                         |
|                        |                                                    |                                                | Move<br>Source<br>Dest _RFID_1:0.Channel    | 0<br>[0].Deta[0]<br>0 ◆           |                                         |
|                        |                                                    |                                                | Move<br>Source<br>Dest _RFID_1:0.Channel[0] | 0<br>.Command<br>33 ←             |                                         |
| Get_Version_Start      | Equal<br>Source A _RFD_11.Channe(0).Cc<br>Source B | ormand<br>33 +<br>0                            |                                             | Move<br>Source<br>Dest _RFID_     | MOV-<br>3<br>1:O.Channel[0].Comman<br>3 |
| Get_Version_Start _    | RFID_1:I.Channel[0].Busy                           |                                                |                                             |                                   | Get_Version_InProgres                   |
| Get_Version_InProgress | s_RFD_1:1.Channel(0).Busy                          | Equal<br>Source A _RFID_1:1.Channel[0].Comman. | 1                                           |                                   | Get_Version_Sta                         |
|                        |                                                    | Source B 33                                    | 3 +                                         |                                   |                                         |
|                        |                                                    |                                                |                                             |                                   |                                         |

The results are stored in Data [0...3]. In this example, the version is de20007 (version 2.07).

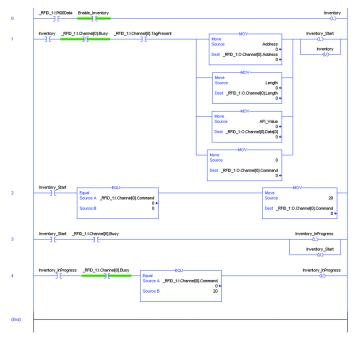
| ⊡RFID_1:I                    | {}    | {} |         | AB:56RF_II |
|------------------------------|-------|----|---------|------------|
| RFID_1:LAuxPwrFault          | 0     |    | Decimal | BOOL       |
| RFID_1:I.BlockFault          | 0     |    | Decimal | BOOL       |
| RFID_1:I.Channel             | {}    | {} |         | AB:56RF_II |
| RFID_1:I.Channel[0]          | {}    | {} |         | AB:56RF_II |
|                              | 0     |    | Decimal | BOOL       |
|                              | 0     |    | Decimal | SINT       |
|                              | 33    |    | Decimal | INT        |
|                              | 0     |    | Decimal | BOOL       |
|                              | 81    |    | Decimal | INT        |
| RFID_1:I.Channel[0].Data     | ()    | {} | Decimal | SINT[160]  |
| ⊞RFID_1:I.Channel[0].Data[0] | 16#07 |    | Hex     | SINT       |
| ⊞RFID_1:I.Channel[0].Data[1] | 16#00 |    | Hex     | SINT       |
|                              | 16#e2 |    | Hex     | SINT       |
|                              | 16#0d |    | Hex     | SINT       |
|                              | 0     |    | Decimal | SINT       |

#### Inventory

The inventory command returns the UUID and DSFID information from the RFID tags in the field. This command can read up to a maximum of four tags. The more tags in the field, the more time the tags must be in the field to complete the inventory command. By setting the output image fields to specific values, the Inventory command returns the following information:

- Returns the number of tags in the field and the UUID of each tag. Set Address =0, Length 1. = 0 and Data[0] = 0
- 2. Returns the number of tags in the field, the UUID, and the DSFID of each tag. Set Address =0, Length = 1 and Data[0] = 0
- Returns the number of tags in the field, the UUID, and the DSFID of each tag that meets 3. the specified AFI. Set Address =1, Length = 1 and Data[0] = AFI value. If the AFI value is 0, then all tags are reported.

Set the following values in the output image table:

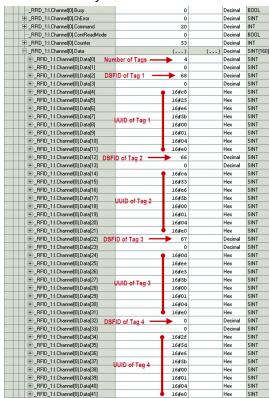

- a. xx:0.Channel[0].Command = 20
- b. xx:0.Channel[0].Address = 0 (or 1)<sup>(a)</sup>
- c. xx:0.Channel[0].Block = 0
- d. xx:0.Channel[0].Data[0] = 0 (or 1)<sup>(b)</sup>
- e. xx:0.Channel[0].Length = 0 (or 1)<sup>(c)</sup>
- f. xx:0.Channel[0].Reset = 0
- q. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0
- i. xx:0.Channel[0].UIDHi = 0

- (a) Set Address = 0 to get all tags in the RF field.
- Set Address = 1 to get all tags that have the AFI value specified in the Data[0] location. Set Data[0] = 0 to return all tags in the RF field. (b)
- Set Data[0] = AFI value (but not zero) to return only those tags that have that AFI value Set Length = 0 to get only the UUID for each tag. Set Length = 1 to get both the UUID and the DSFID for each tag. (c)

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length data, the Data[0] value that is used to clear the fields and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address =0, Length = 0 and Data[0] = 0. These values are then changed to obtain example results for the three versions of the Inventory command.




#### **Example Results**

In example 1, the Address = 0, Length = 0 and Data[0] = 0. Four RFID tags were in the RF field at the time the read command was executed. The controller tag values are shown in the following example. The data shows the number of tags in the RF field and the UUID for each tag.

| ERFID_1:I.Channel[0]             |               | {}             | {} |         | AB:56 |
|----------------------------------|---------------|----------------|----|---------|-------|
| RFID_1:I.Channel(0).Busy         |               | 0              |    | Decimal | BOOL  |
|                                  |               | 0              |    | Decimal | SINT  |
|                                  |               | 20             |    | Decimal | INT   |
| RFID_1:I.Channel[0].ContReadMode |               | 0              |    | Decimal | BOOL  |
|                                  |               | 45             |    | Decimal | INT   |
| RFID_1:I.Channel[0].Data         |               | {}             | {} | Decimal | SINT  |
|                                  | umber of Tags | → 4            |    | Decimal | SINT  |
| RFID_1:I.Channel[0].Data[1]      |               | 0              |    | Decimal | SINT  |
|                                  |               | <b>0</b> 16#c8 |    | Hex     | SINT  |
|                                  |               | 16#25          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[4]     |               | 16#e6          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[5]     | UUID of Tag 1 | 16#5b          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[6]     | UUID of Tag 1 | 16#00          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[7]     |               | 16#01          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[8]     |               | 16#04          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[9]     |               | 16#e0          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[10]    |               | <b>16#e9</b>   |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[11]    |               | 16#04          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[12]    |               | 16#e6          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[13]    | UUID of Tag 2 | 16#5b          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[14]    | OULD OF TAY 2 | 16#00          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[15]    |               | 16#01          |    | Hex     | SINT  |
| +BFID_1:I.Channel[0].Data[16]    |               | 16#04          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[17]    |               | 16#e0          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[18]    |               | <b>16#</b> ca  |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[19]    |               | 16#53          |    | Hex     | SINT  |
|                                  |               | 16#e6          |    | Hex     | SINT  |
|                                  | UUID of Tag 3 | 16#5b          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[22]    | COLD OF TAG 5 | 16#00          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[23]    |               | 16#01          |    | Hex     | SINT  |
|                                  |               | 16#04          |    | Hex     | SINT  |
|                                  |               | 16#e0          |    | Hex     | SINT  |
|                                  |               | ∎ 16#2£        |    | Hex     | SINT  |
|                                  |               | 16#5d          |    | Hex     | SINT  |
| +RFID_1:I.Channel[0].Data[28]    |               | 16#e6          |    | Hex     | SINT  |
|                                  | UUID of Tag 4 | 16#5b          |    | Hex     | SINT  |
|                                  | UUID OF Tag 4 | 16#00          |    | Hex     | SINT  |
|                                  |               | 16#01          |    | Hex     | SINT  |
|                                  |               | 16#04          |    | Hex     | SINT  |
|                                  |               | 16#e0          |    | Hex     | SINT  |
|                                  |               |                |    |         |       |

In example 2, the length was changed to 1, the Address = 0, Length = 1 and Data[0] = 0. Four RFID tags were in the RF field at the time the read command was executed. The controller tag values are shown in the following example. The data shows the number of tags in the RF field, the DSFID, and the UUID for each tag.



In example 3, we get the tag information for only those tags that have a specific AFI. In this example, the AFI is 57. Address = 1, Length = 1 and Data[0] = 57. Two of the four RFID tags that were present in the RF field at the time the read command was executed had AFI set to 57. The controller tag values are shown in the following example. The data shows the number of tags in the RF field, the DSFID, and the UUID for each of these tags.

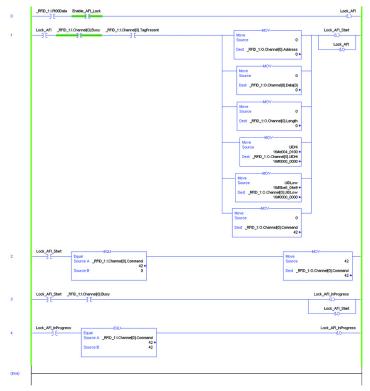
| Name                         | 28 A   | Value           | +      | Force Mask 🗧 | Style   | Data Type                        |
|------------------------------|--------|-----------------|--------|--------------|---------|----------------------------------|
| ERFID_1:I.Channel[0]         |        |                 | {}     | {}           |         | AB:56RF_IN_IP_Struct_In_SINT:I:0 |
| RFID_1:I.Channel[0].Busy     |        |                 | 0      |              | Decimal | BOOL                             |
|                              |        |                 | 0      |              | Decimal | SINT                             |
| ⊞RFID_1:I.Channel[0].Command |        |                 | 20     |              | Decimal | INT                              |
| RFID_1:I.Channel(0).ContRead | lode   |                 | 0      |              | Decimal | BOOL                             |
| ⊕RFID_1:I.Channel[0].Counter |        |                 | 19     |              | Decimal | INT                              |
| RFID_1:I.Channel[0].Data     |        |                 | {}     | {}           | Decimal | SINT[160]                        |
| ■RFID_1:I.Channel[0].Data[0] | lwo ta | as with AFI = 5 | 7 -> 2 |              | Decimal | SINT                             |
|                              |        | Ŭ.              | 0      |              | Decimal | SINT                             |
|                              | DSF    | ID of 1st tag — |        |              | Decimal | SINT                             |
|                              |        |                 | 0      |              | Decimal | SINT                             |
| ERFID_1:I.Channel[0].Data[4] |        |                 | 16#c8  |              | Hex     | SINT                             |
|                              |        |                 | 16#25  |              | Hex     | SINT                             |
|                              |        |                 | 16#e6  |              | Hex     | SINT                             |
|                              | U      | UID of Tag 1    | 16#5b  |              | Hex     | SINT                             |
|                              |        |                 | 16#00  |              | Hex     | SINT                             |
|                              |        |                 | 16#01  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#04  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#e0  |              | Hex     | SINT                             |
| ERFID_1:I.Channel[0].Data[12 | DSF    | D of 2nd tag —  |        |              | Decimal | SINT                             |
|                              | ]      |                 | 0      |              | Decimal | SINT                             |
|                              | ]      |                 | 16#0d  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#ee  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#e5  |              | Hex     | SINT                             |
|                              | J U    | UID of Tag 2    | 16#5b  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#00  |              | Hex     | SINT                             |
| ERFID_1:I.Channel[0].Data[19 | ]      |                 | 16#01  |              | Hex     | SINT                             |
| ⊞RFID_1:I.Channel[0].Data[20 | ]      |                 | 16#04  |              | Hex     | SINT                             |
| ⊕RFID_1:I.Channel[0].Data[21 | ]      |                 | 16#e0  |              | Hex     | SINT                             |
|                              | ]      |                 | 16#00  |              | Hex     | SINT                             |

### Lock AFI

The Lock AFI command locks the 1 byte of information for the AFI, preventing it from being modified in the future.

**IMPORTANT** Once the AFI byte is locked, it cannot be unlocked.

The AFI is used to group RFID tags by application. This configuration allows the transceiver to send out an AFI and target only the tags that meet the application criteria.


Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 42
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = UIDLow
- i. xx:0.Channel[0].UIDHi = UIDHi

The UIDLow and UIDHi bytes must be specified to lock the AFI value. The UUID can be found by performing the Inventory command.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, the Data[0, UIDLow and UIDHi values used to lock the AFI and sets the command value to 0. The BlockSize, Reset, and Timeout are set to 0 in the output image table.



<u>Figure 27</u> shows an example of results on the input image table. The Command is showing 42 and the ChError is showing 0. The input data bytes are all zero.

#### Figure 27 - Input Image Table

| RFID_1:I.Channel                 | {}                | {} |         | AB:56RF_IN_IP_ |
|----------------------------------|-------------------|----|---------|----------------|
| ERFID_1:I.Channel[0]             | {}                | {} |         | AB:56RF_IN_IP_ |
|                                  | 0                 |    | Decimal | BOOL           |
| ERFID_1:I.Channel[0].ChError     | No error 🔶 0      |    | Decimal | SINT           |
|                                  | Command = 42 - 42 |    | Decimal | INT            |
| RFID_1:I.Channel[0].ContReadMode | 0                 |    | Decimal | BOOL           |
| _RFID_1:I.Channel[0].Counter     | 56                |    | Decimal | INT            |
| RFID_1:I.Channel[0].Data         | {}                | {} | Decimal | SINT[160]      |
|                                  | 0                 |    | Decimal | SINT           |
|                                  | 0                 |    | Decimal | SINT           |
| ERFID_1:I.Channel[0].Data[2]     | 0                 |    | Decimal | SINT           |
|                                  | 0                 |    | Decimal | SINT           |
|                                  |                   |    |         |                |

#### Errors

The following ChErrors are generated:

- 0 AFI was successfully locked.
- 4 A tag with the wrong UUID entered the RF field.
- 8 A tag that has already been locked entered the RF field.

### Lock Block

The Lock Block command locks one block of user data, preventing future writing. The transceiver automatically determines the block size of the RFID tag.

**IMPORTANT** Once the block is locked, the block cannot be unlocked.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 40
- b. xx:0.Channel[0].Address = the number of the block to lock
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = UIDLow
- i. xx:0.Channel[0].UIDHi = UIDHi

The UIDLow and UIDHi bytes must be specified to lock the block values. The UUID can be found by performing the Inventory command.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, the Data[0], UIDLow, and UIDHi values used to lock the block and sets the command value to 0. The BlockSize, Reset, and Timeout are set to 0 in the output image table.

In the example routine, rung 1 initializes the output image table. The UUID is stored in a controllers tags UIDLow and UIDHi. Block 26 is locked. This tag has a total of 27 blocks.

|                      | Enable_Lock_Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | Lock_Bi                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|
| JL                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | (I)                                   |
|                      | 1:I.Channel[0].BusyRFID_1:I.Channel[0].TagPresent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOV                                                 | Lock_Block_Start                      |
| ][                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Move<br>Source Add<br>Dest _RFID_1:0.Channel(0).Add | 26 CLock_Block                        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | 0+                                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Move                                                |                                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source                                              | 0                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dest _RFID_1:O.Channel[0].Le                        | ngth<br>0 ←                           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mov-                                                |                                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source                                              | 0                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dest _RFID_1:O.Channel[0].Da                        | ta[0]<br>0 ←                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOV                                                 | _                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Move<br>Source UID<br>16#5be6_                      | Low                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dest _RFID_1:O.Channel[0].UID<br>16#0000_I          | Low                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOV                                                 |                                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | JDHi                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16#e004_<br>Dest _RFID_1:0.Channel[0].<br>16#0000_  | JDHi                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOV                                                 |                                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Move<br>Source                                      | 0                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dest _RFID_1:O.Channel(0).Comm                      | nand<br>0 ←                           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | 04                                    |
| Lock_Block_Start     | EQU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | MOV                                   |
| 36                   | Equal<br>Source A _RFID_1:I.Channel[0].Command<br>0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | Nove<br>Source 40                     |
|                      | Source B 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t i                                                 | est _RFID_1:O.Channel[0].Command<br>0 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                   |                                       |
| COCK_BROCK_Start     | RFID_1:I.Channel[0].Busy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | Lock_Block_InProgress                 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | Lock_Block_Star                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | Lock_Block_InProg                     |
| Lock_Block_InProgres | s _RFID_1:I.Channel[0].BusyEQU-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | Lock_block_inProg                     |
| Lock_Block_InProgres | s _RFID_1:1.Channel[0] BusyEQUEQUEqualEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQUEQU- | annel[0].Command                                    | U)                                    |
| Lock_Block_InProgres | Equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | annel(0).Command<br>0 ←<br>40                       |                                       |
| Lock_Block_InProgres | Equal<br>Source A _RFID_1:I.Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 ←                                                 | Look_Block_InProg                     |

Figure 28 shows address 26, which is the second to last block of the catalog number 56RF-TG-30 tag. The command is 40. The UUID must be specified to lock any blocks.

#### Figure 28 - Input Image Table

| RFID_1:0.Channel[0]         |       |              | {}           | {} |         | AB:56RF_I |
|-----------------------------|-------|--------------|--------------|----|---------|-----------|
| RFID_1:0.Channel[0].Address | Pleat | to be locked |              | (, | Decimal | INT       |
|                             | DIOCI | to be locked |              |    |         |           |
|                             |       |              | 0            |    | Decimal | INT       |
|                             | Co    | mmand = 40   |              |    | Decimal | INT       |
|                             |       |              | {}           | () | Decimal | SINT[112] |
|                             |       |              | 0            |    | Decimal | INT       |
|                             |       |              | 0            |    | Decimal | BOOL      |
|                             |       |              | 0            |    | Decimal | INT       |
|                             |       | UID 📥        | 16#e004_0100 |    | Hex     | DINT      |
|                             |       |              | 16#5be6_04e9 |    | Hex     | DINT      |

After completion of the lock block command, the input image table shows that the command is 40 and the ChError is 0.

| ERFID_1:I.Channel[0]                | {}                | {} |         | AB:56RF_  |
|-------------------------------------|-------------------|----|---------|-----------|
| RFID_1:I.Channel[0].Busy            | 0                 |    | Decimal | BOOL      |
| ■RFID_1:I.Channel[0].ChError        | No error 🔶 o      |    | Decimal | SINT      |
|                                     | Command = 40 - 40 |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode    | 0                 |    | Decimal | BOOL      |
| ■RFID_1:I.Channel[0].Counter        | 12                |    | Decimal | INT       |
|                                     | ()                | {} | Decimal | SINT[160] |
|                                     | 0                 |    | Decimal | BOOL      |
| ■RFID_1:I.Channel[0].Length         | 0                 |    | Decimal | INT       |
| RFID_1:I.Channel[0].Reset           | 0                 |    | Decimal | BOOL      |
| RFID_1:I.Channel[0].ResetInProgress | 0                 |    | Decimal | BOOL      |
|                                     | 0                 |    | Decimal | BOOL      |

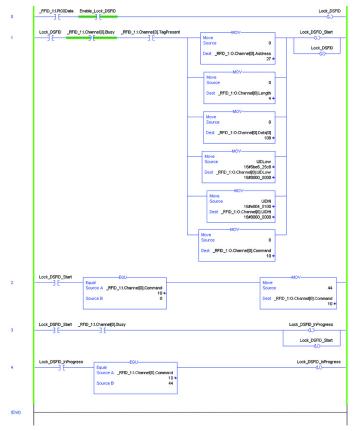
#### Errors

The ChErrorfield is 8 if you try to lock a block that is already locked.

## Lock DSFID

The Lock DSFID command locks the 1 byte of information for the Data Storage Format Identifier (DSFID) area of the tag, preventing it from being modified.

**IMPORTANT** Once the DSFID byte is locked, it cannot be unlocked.


Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 44
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].Data[0] = 0
- d. xx:0.Channel[0].Length = 0
- e. xx:0.Channel[0].Reset = 0
- f. xx:0.Channel[0].Timeout = 0
- g. xx:0.Channel[0].UIDLow = UIDLow
- h. xx:0.Channel[0].UIDHi = UIDHi

The UIDLow and UIDHi bytes must be specified to lock the DSFID value. The UUID can be found by performing the Inventory command.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, the Data[0], UIDLow, and UIDHi values used to lock the DSFID and sets the command value to 0. The BlockSize, Reset, and Timeout are set to 0 in the output image table.



When successful, the results shown in the input image table show ChError = 0 and the Command number =44.

If you try to lock the DSFID on an RFID tag that is already locked, the ChError is equal to 8.

| RFID_1:I.Channel    | {}                | {} |         | AB:56RF  |
|---------------------|-------------------|----|---------|----------|
| RFID_1:I.Channel[0] | {}                | () |         | AB:56RF_ |
|                     | 0                 |    | Decimal | BOOL     |
|                     | No error 🔶 o      |    | Decimal | SINT     |
|                     | Command = 44 - 44 |    | Decimal | INT      |
|                     | 0                 |    | Decimal | BOOL     |
|                     | 9                 |    | Decimal | INT      |
|                     | {}                | {} | Decimal | SINT[160 |
|                     | 0                 |    | Decimal | BOOL     |
|                     | 0                 |    | Decimal | INT      |
|                     | 0                 |    | Decimal | BOOL     |
|                     | 0                 |    | Decimal | BOOL     |
|                     | 0                 |    | Decimal | BOOL     |

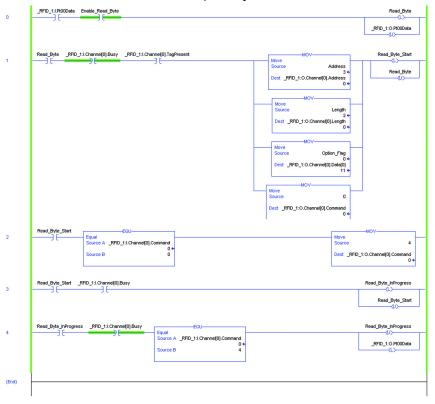
### **Read Byte Command**

The Read Byte command reads a user-specified number of bytes from a tag, starting at a user-specified address. An Option Flag can be set to return the UUID of the tag. The maximum number of bytes that can be read at a time is 160 bytes using option flag 0, and 152 bytes using option flag 1.

- Option Flag O
  - Returns the specified user data. Set xx:0.Channel[0].Data[0] = 0.
- Option Flag 1
   Returns the UUID of the RFID tag and the specified user data. Set xx:0.Channel[0].Data[0] = 1.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 4
- b. xx:0.Channel[0].Address = starting address to read
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = Option Flag
- e. xx:0.Channel[0].Length = the number of bytes to read
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0
- i. xx:0.Channel[0].UIDHi = 0


This command operates only on the first tag in the field.

Data[1] must also be set to 0.

#### **Example Routine**

The following example routine is to read all data and the UUID in a catalog number 56RF-TG-30 ICODE tag. This tag holds a maximum of 112 bytes of data.

In the following example routine, the initialization in Rung 1 sets the address, length, the Data[0]to the Option Flag, and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.



### **Example Results**

Figure 29 shows an example of results where the Option Flag was set to 1, which reads the UUID.

The UUID is loaded into Data[0] through Data[7]. The user data (1, 2, 3, 4, 5, 6...) begins in Data[8]. Figure 29 only shows a partial listing of the user data. The command read in 112 bytes of data.

Figure 29 - Input Image Table - User Data

| RFID_1:I.Channel[0]           |                | {}    | {} |         | AB:56RF_  |
|-------------------------------|----------------|-------|----|---------|-----------|
|                               |                | 0     |    | Decimal | BOOL      |
|                               |                | 0     |    | Decimal | SINT      |
|                               |                | 4     |    | Decimal | INT       |
|                               |                | 0     |    | Decimal | BOOL      |
|                               |                | 160   |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data      |                | {}    | {} | Decimal | SINT[160] |
|                               | •              | 16#99 |    | Hex     | SINT      |
|                               | UID Low        | 16#d6 |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[2]  |                | 16#5a |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[3]  |                | 16#17 |    | Hex     | SINT      |
|                               | •              | 16#00 |    | Hex     | SINT      |
|                               | UID Hi         | 16#01 |    | Hex     | SINT      |
|                               |                | 16#04 |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[7]  |                | 16#e0 |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[8]  |                | • 1   |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[9]  |                | 2     |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[10] |                | 3     |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[11] | Partial View o | f 4   |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[12] | User Data      | 5     |    | Decimal | SINT      |
|                               |                | 6     |    | Decimal | SINT      |
|                               |                | 7     |    | Decimal | SINT      |
|                               |                | 8     |    | Decimal | SINT      |
| ⊕RFID_1:I.Channel[0].Data[16] |                | 9     |    | Decimal | SINT      |

In <u>Figure 30</u>, the command was repeated with the Starting Address set to 2 and the number of bytes set to 3.

| Figure 30 - Input Image Table - Repeated Comm |
|-----------------------------------------------|
|-----------------------------------------------|

| RFID_1:I.Channel[0]              |           | {}     | {} |         | AB:56RF_  |
|----------------------------------|-----------|--------|----|---------|-----------|
|                                  |           | 0      |    | Decimal | BOOL      |
|                                  |           | 0      |    | Decimal | SINT      |
|                                  |           | 4      |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode |           | 0      |    | Decimal | BOOL      |
|                                  |           | 161    |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data         |           | {}     | {} | Decimal | SINT[160] |
| ERFID_1:I.Channel[0].Data[0]     |           | 16#99  |    | Hex     | SINT      |
|                                  |           | 16#d6  |    | Hex     | SINT      |
|                                  |           | 16#5a  |    | Hex     | SINT      |
|                                  | UUID      | 16#17  |    | Hex     | SINT      |
|                                  |           | 16#00  |    | Hex     | SINT      |
|                                  |           | 16#01  |    | Hex     | SINT      |
|                                  |           | 16#04  |    | Hex     | SINT      |
|                                  | •         | 16#e0  |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[8]     |           | 93     |    | Decimal | SINT      |
| ⊕RFID_1:I.Channel[0].Data[9]     | User Data | ain 4  |    | Decimal | SINT      |
|                                  | Bytes 2   | .4 • 5 |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[11]    |           | 0      |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[12]    |           | 0      |    | Decimal | SINT      |

### **Multi-tag Block Read**

The Multi-tag Block Read command reads multiple blocks of user data from multiple tags in the RF field. The transceiver automatically determines the block size. All RFID tags in the field will have the same block size.

This command can read up to four tags. Adequate time must be allowed to read all tags in the RF field.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 3
- b. xx:0.Channel[0].Address = the first block to read
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = the number of blocks to read
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first four tags in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, the Data[0] value that is used to read multiple tags and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address = 25 and the Length = 2. The command reads blocks 25 and 26.

| _RFID  | 1:I.Pt00Data E  | nable_Multi_Block_Tag_Read  |                                 |                                                          | Mutti_Tag_Blo                  |
|--------|-----------------|-----------------------------|---------------------------------|----------------------------------------------------------|--------------------------------|
| Multi_ | Tag_Block_Read  | _RFID_1:I.Channel[0].Busy   | _RFID_1:I.Channel[0].TagPresent | Move                                                     | Multi_Tag_Block_Read_          |
|        |                 |                             |                                 | Dest _RFID_1:O.Channel[0].Addres:                        | 5 🗧 Multi_Tag_Block_f          |
|        |                 |                             |                                 | Move<br>Source Lengti<br>Dest_RFID_1:0.Channel[0].Lengti | 2 🗧                            |
|        |                 |                             |                                 | Move                                                     |                                |
|        |                 |                             |                                 | Dest _RFID_1:0.Channel(0).Data(0                         | 0<br>Ŋ<br>0 ←                  |
|        |                 |                             |                                 | Move<br>Source (<br>Dest _RFID_1:O.Channel(0).Comman     | 0                              |
| Multi_ | Tag_Block_Read_ | Equal                       | EGU-                            |                                                          | Move<br>Source                 |
|        |                 | Source B                    | 0 +<br>0                        |                                                          | Dest _RFID_1:0.Channel[0].Comm |
| Multi_ | Tag_Block_Read_ | Start _RFID_1:I.Channel[0]. | Jusy                            |                                                          | Multi_Tag_Block_Read_InProg    |
|        |                 |                             |                                 |                                                          | Multi_Tag_Block_Read_          |
| Multi_ | Tag_Block_Read_ | InProgress _RFID_1:I.Chani  | Equal                           | EQU                                                      | Multi_Tag_Block_Read_In        |
|        |                 |                             | Source d                        | <b>`</b>                                                 |                                |
|        |                 |                             |                                 |                                                          |                                |

The input image data fields are populated with the number of tags, followed by the UUID and block data of each tag.

In the following example, four catalog number 56RF-TG-30 RFID tags were read. These tags hold 4 bytes per block. Since two blocks (25 and 26) were read, a total of eight data fields are used to store the user data. The image only shows the information from two of the four RFID tags.

| ERFID_1:I.Channel(0)             |                    | {}      | {} |         | AB:56R |
|----------------------------------|--------------------|---------|----|---------|--------|
| RFID_1:I.Channel(0).Busy         |                    | 0       |    | Decimal | BOOL   |
|                                  |                    | 0       |    | Decimal | SINT   |
|                                  |                    | 3       |    | Decimal | INT    |
| RFID_1:I.Channel[0].ContReadMode |                    | 0       |    | Decimal | BOOL   |
|                                  |                    | 187     |    | Decimal | INT    |
| RFID_1:I.Channel[0].Data         | umber of Tags      | {}      | () | Decimal | SINT[1 |
|                                  | in RF Field -      | - 4     |    | Decimal | SINT   |
|                                  |                    | 0       |    | Decimal | SINT   |
|                                  |                    | 16#e9   |    | Hex     | SINT   |
|                                  |                    | 16#04   |    | Hex     | SINT   |
|                                  |                    | 16#e6   |    | Hex     | SINT   |
|                                  | UUID of Tag 1      | 16#5b   |    | Hex     | SINT   |
|                                  | oold of rug i      | 16#00   |    | Hex     | SINT   |
|                                  |                    | 16#01   |    | Hex     | SINT   |
|                                  |                    | 16#04   |    | Hex     | SINT   |
|                                  |                    | 16#e0   |    | Hex     | SINT   |
|                                  |                    | • 100   |    | Decimal | SINT   |
|                                  | Data From Block 25 | 101     |    | Decimal | SINT   |
|                                  | of Tag 1           | 102     |    | Decimal | SINT   |
|                                  |                    | 103     |    | Decimal | SINT   |
| EBFID_1:I.Channel[0].Data[14]    |                    | 9 104   |    | Decimal | SINT   |
|                                  | Data From Block 26 | 105     |    | Decimal | SINT   |
|                                  | of Tag 1           | 106     |    | Decimal | SINT   |
|                                  |                    | • 107   |    | Decimal | SINT   |
|                                  | •                  | ] 16#ca |    | Hex     | SINT   |
|                                  |                    | 16#53   |    | Hex     | SINT   |
|                                  |                    | 16#e6   |    | Hex     | SINT   |
| ERFID_1:I.Channel[0].Data[21]    | UUID of Tag 2      | 16#5b   |    | Hex     | SINT   |
|                                  | 0010 01 1 ag 2     | 16#00   |    | Hex     | SINT   |
|                                  |                    | 16#01   |    | Hex     | SINT   |
|                                  |                    | 16#04   |    | Hex     | SINT   |
|                                  |                    | 16#e0   |    | Hex     | SINT   |
| ■ _RFID_1:I.Channel[0].Data[26]  |                    | 9 51    |    | Decimal | SINT   |
|                                  | Data From Block 25 | 52      |    | Decimal | SINT   |
| ■RFID_1:I.Channel[0].Data[28]    | of Tag 2           | 53      |    | Decimal | SINT   |
| ■ _RFID_1:I.Channel[0].Data[29]  |                    | 54      |    | Decimal | SINT   |
|                                  |                    | 9 61    |    | Decimal | SINT   |
|                                  | Data From Block 28 | 62      |    | Decimal | SINT   |
|                                  | of Tag 2           | 63      |    | Decimal | SINT   |
| +RFID_1:I.Channel[0].Data[33]    |                    | 64      |    | Decimal | SINT   |
|                                  |                    |         |    |         |        |

# **Read Multiple Blocks**

The Read Multiple Blocks command reads multiple blocks of user data from an RFID tag. Option Flags can be set to return just the data in the blocks or return the data and the security status for each block of data. The maximum number of blocks that can be read at one time is 10.

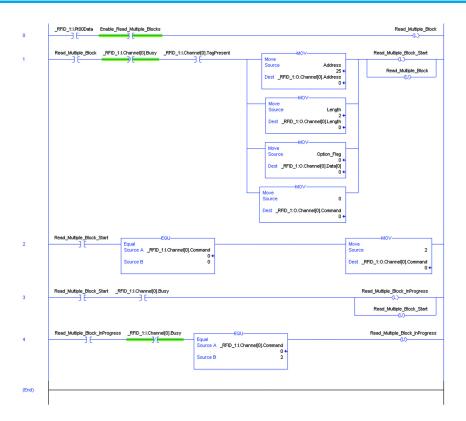
• Option Flag O

Returns multiple blocks of user data. Set xx:0.Channel[0].Data[0] = 0.

• Option Flag 1

Returns multiple blocks of user data and the security status of each block. Set xx:0.Channel[0].Data[0] = 1.

Set the following values in the output image table:


- a. xx:0.Channel[0].Command = 2
- b. xx:0.Channel[0].Address = the first block to read
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = the Option Flag
- e. xx:0.Channel[0].Length = the number of blocks to read
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, and Data[0] values used to read multiple blocks and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address =25, the Length = 2. Data[0] is set to Option Flag 0 (return just the data). The command reads blocks 25 and 26. The example is repeated with Option Flag set to 1.



This first example uses Option Flag = 0; return only the data in the blocks. With a starting block number of 25 and two blocks to read, data from Blocks 25 and 26 are returned. The tag was a catalog number 56RF-TG-30, which has only 4 bytes per block. The data appears in the input channel Data[0...7].

| ERFID_1:I.Channel[0]         |                                       | {}  | {} |         | AB:56RF_IN |
|------------------------------|---------------------------------------|-----|----|---------|------------|
|                              |                                       | 0   |    | Decimal | BOOL       |
| ■RFID_1:I.Channel[0].ChError |                                       | 0   |    | Decimal | SINT       |
|                              |                                       | 2   |    | Decimal | INT        |
|                              |                                       | 0   |    | Decimal | BOOL       |
|                              |                                       | 34  |    | Decimal | INT        |
|                              | {}                                    |     | {} | Decimal | SINT[160]  |
|                              |                                       | 100 |    | Decimal | SINT       |
|                              | Data From Block 25                    | 101 |    | Decimal | SINT       |
|                              |                                       | 102 |    | Decimal | SINT       |
|                              |                                       | 103 |    | Decimal | SINT       |
|                              | · · · · · · · · · · · · · · · · · · · | 104 |    | Decimal | SINT       |
|                              | Data From Block 26                    | 105 |    | Decimal | SINT       |
|                              |                                       | 106 |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Data[7] |                                       | 107 |    | Decimal | SINT       |

This second example shows the results for Option Flag = 1; return the data and the security status. With a starting block number of 25 and two blocks to read, data from Blocks 25 and 26 are returned. The tag was a catalog number 56RF-TG-30, which has only 4 bytes per block.

The data for the first block appears in the input channel Data[0...3]. The security status appears in Data[4]. The value of 0 indicates that the block is not locked.

| RFID_1:I.Channel[0]                                                                                 |                    | {}  | {} |         | AB:56RF_I |
|-----------------------------------------------------------------------------------------------------|--------------------|-----|----|---------|-----------|
|                                                                                                     |                    | 0   |    | Decimal | BOOL      |
|                                                                                                     |                    | 0   |    | Decimal | SINT      |
|                                                                                                     |                    | 2   |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode                                                                    |                    | 0   |    | Decimal | BOOL      |
|                                                                                                     |                    | 38  |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data                                                                            |                    | {}  | {} | Decimal | SINT[160] |
|                                                                                                     |                    | 100 |    | Decimal | SINT      |
|                                                                                                     | Data From Block 25 | 101 |    | Decimal | SINT      |
|                                                                                                     |                    | 102 |    | Decimal | SINT      |
|                                                                                                     |                    | 103 |    | Decimal | SINT      |
|                                                                                                     | tus of Block 25    | ۰ 🔶 |    | Decimal | SINT      |
|                                                                                                     | ls not Locked      | 0   |    | Decimal | SINT      |
|                                                                                                     | •                  | 104 |    | Decimal | SINT      |
|                                                                                                     | Data From Block 26 | 105 |    | Decimal | SINT      |
|                                                                                                     |                    | 106 |    | Decimal | SINT      |
| ⊕RFID_1:I.Channel[0].Data[9]     ⊕- RFID_1:I.Channel[0].Data[9]     ⊕- RFID_1:I.Channel[0].Data[10] | tue of Block 26    | 107 |    | Decimal | SINT      |
| E                                                                                                   |                    | 1   |    | Decimal | SINT      |
| ERFID_1:I.Channel[0].Data[11]                                                                       | A 19 LOCKEU        | 0   |    | Decimal | SINT      |

The data for the second block appears in the input channel Data[6...9]. The security status appears in Data[10]. The value of 1 indicates that the block is locked.

### **Read Single Block**

The Read Single Block command reads one block of user data from a tag. Option Flags can be set to return information the UUID and security status of the block.

- Option Flag O
  - Returns one block of user data. Set xx:0.Channel[0].Data[0] = 0.
- Option Flag 1

Returns one block of user data and the security status of that block. Set xx:0.Channel[0].Data[0] = 1.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 1
- b. xx:0.Channel[0].Address = the block number to read.
- c. xx.0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = the Option Flag value
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, and Data[0] values used to read multiple blocks and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address =26. Data[0] is set to Option Flag 0 (return just the data). The command reads blocks 25 and 26. The example is repeated with Option Flag set to 1.

|       | _RFID_11P100Data Enakle_Read_Single_Block                                               | Read_Single_Block                                            |
|-------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
|       | Read Single_Block _RFID_11.Channel[0].TagPresentWOV                                     | Read_Single_Block_Start                                      |
|       |                                                                                         | (L)<br>Read_Single_Block                                     |
|       | Move<br>Source 0                                                                        |                                                              |
|       | Dest _RFD_t-0.Channel(0)Lengh<br>0+<br>1400-                                            |                                                              |
|       | Move Option_Flag<br>Source Option_Flag<br>0 e<br>DestRFID_1:0.Channel(0).Data(0)<br>1 + |                                                              |
|       | Move 0                                                                                  |                                                              |
|       | Dest_FRD_1:0.Channel(0).Command<br>1 +                                                  |                                                              |
| 2     | Source A _RFID_1:1.Channel[0].Command                                                   | Move<br>Source 1<br>Dest _RFID_1:O.Channel(0).Command<br>1 ← |
| 3     | Read_Sngle_Block_StartRFD_11Channet(D)Busy                                              | Read_Single_Block_InProgress                                 |
|       |                                                                                         | Read_Single_Block_Start                                      |
| •     | Read_Single_Block_InProgress                                                            | Read_Single_Block_InProgress                                 |
|       | Source B 1                                                                              |                                                              |
| (End) |                                                                                         |                                                              |

• Option Flag 0

This first example uses Option Flag = 0; return only the data in the block. The block number is 26. The tag was a catalog number 56RF-TG-30, which has only 4 bytes per block. The data appears in the input channel Data[0...3].

| RFID_1:I.Channel[0]      |                     | ()  | {} |         | AB:56RF_I |
|--------------------------|---------------------|-----|----|---------|-----------|
|                          |                     | 0   |    | Decimal | BOOL      |
|                          |                     | 0   |    | Decimal | SINT      |
|                          | gle Block Command = | 1 1 |    | Decimal | INT       |
|                          |                     | 0   |    | Decimal | BOOL      |
|                          | 22                  |     |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data |                     | ()  | {} | Decimal | SINT[160] |
|                          | 1                   | 104 |    | Decimal | SINT      |
|                          | Data From Block 26  | 105 |    | Decimal | SINT      |
|                          |                     | 106 |    | Decimal | SINT      |
|                          | •                   | 107 |    | Decimal | SINT      |

• Option Flag 1

The second example demonstrates the results when Option Flag = 1. Data[0] shows the security status of the block. The 1 indicates that the block has been locked. A zero indicates that the block is unlocked. The data appears in Data[1...4].

| Name III 🛆                       | Value 🔶           | Force Mask 🗲 | Style   | Data Type                           |
|----------------------------------|-------------------|--------------|---------|-------------------------------------|
| RFID_1:I.Channel                 | {}                | {}           |         | AB:56RF_IN_IP_Struct_In_SINT:I:0[2] |
| RFID_1:I.Channel[0]              | {}                | {}           |         | AB:56RF_IN_IP_Struct_In_SINT:I:0    |
|                                  | 0                 |              | Decimal | BOOL                                |
|                                  | 0                 |              | Decimal | SINT                                |
|                                  | 1                 |              | Decimal | INT                                 |
| RFID_1:I.Channel[0].ContReadMode | 0                 |              | Decimal | BOOL                                |
|                                  | 21                |              | Decimal | INT                                 |
|                                  | {}                | {}           | Decimal | SINT[160]                           |
| ⊞RFID_1:I.Channel[0].Data[0]     | 104               |              | Decimal | SINT                                |
|                                  | From Block 26 105 |              | Decimal | SINT                                |
|                                  | 106               |              | Decimal | SINT                                |
| ⊞RFID_1:I.Channel[0].Data[3]     | • 107             |              | Decimal | SINT                                |
|                                  | ock Status 💶 📦 1  |              | Decimal | SINT                                |
|                                  | Block is locked 0 |              | Decimal | SINT                                |
|                                  | 0                 |              | Decimal | SINT                                |
|                                  | 0                 |              | Decimal | SINT                                |

# **Read Transceiver Settings**

The Read Transceiver Settings command retrieves the following information from the transceiver:

- Device ID
- Communication rate
- Retry time
- Gain

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 31
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = 0
- e. xx:0.Channel[0].Length = 0
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0
- i. xx:0.Channel[0].UIDHi = 0

### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, data, and command. Because the address, length and Data[0] can only be 0, the source in the MOV instruction can be set to 0. The UIDLow, UIDHi, BlockSize, Reset, and Timeout are set to 0 in the output image table.

|       | _RFID_1:I.Pt00Data Enable_Read_Transceiver_Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read_Transceiver_Settings                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
| 1     | Read_Transceiver_Settings         IFID_11:Channel(0) Busy         MOV           Source         0           Dest_IRFD_1:0.Channel(0) Address         0 etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Read_Transceiver_Settings_Start                            |
|       | Move<br>Source 0<br>Dest_RFID_1:0.Channel[0]Length<br>0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
|       | MOV<br>Source 0<br>Dest _RFD_1:0.Chennet[0].Data[0]<br>0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |
|       | Move<br>Source 0<br>Dest_RFID_1:0.Channet(0).Command<br>0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| 2     | Read_Single_Block_Start<br>Equal<br>Source ARFD_1:1Channe[0].Command<br>Source B 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Move<br>Source 1<br>Dest_RFD_1:0.Channel(0).Command<br>1 e |
| 3     | Read_Single_Block_Start _RFD_11.Channel(0)Busy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Read_Single_Block_InProgress                               |
| 4     | Read_Single_Block_InProgress _RFD_t1:Channel(0)BusyEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualEqualE | Read_Single_Block_InProgress                               |
| (End) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |

•

The following information is displayed:

- xx:I.Channel[0].Data[0...1] = Device ID
- xx:I.Channel[0].Data[2...5] = Communication rate
- xx:I.Channel[0].Data[6...7] = Retry setting
- xx:l.Channel[0].Data[8...9] = Gain

Gain is 0...3, with 0 being the highest gain.

|                                  |             | {}    | {} |         | AB:56RF_I |
|----------------------------------|-------------|-------|----|---------|-----------|
| RFID_1:I.Channel[0]              |             | {}    | {} |         | AB:56RF_I |
|                                  |             | 0     |    | Decimal | BOOL      |
|                                  |             | 0     |    | Decimal | SINT      |
| ⊞BFID_1:I.Channel[0].Command     |             | 31    |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode |             | 0     |    | Decimal | BOOL      |
|                                  |             | 189   |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data         |             | {}    | {} | Decimal | SINT[160] |
| ⊕RFID_1:I.Channel[0].Data[0]     | Device ID   | 16#01 |    | Hex     | SINT      |
| ⊕RFID_1:I.Channel[0].Data[1]     | Device ID   | 16#00 |    | Hex     | SINT      |
| ⊕RFID_1:I.Channel[0].Data[2]     |             | 16#00 |    | Hex     | SINT      |
|                                  |             | 16#96 |    | Hex     | SINT      |
| +RFID_1:I.Channel[0].Data[4]     | Baud Rate   | 16#00 |    | Hex     | SINT      |
| ⊕RFID_1:I.Channel[0].Data[5]     |             | 16#00 |    | Hex     | SINT      |
|                                  | Dates Times | 16#03 |    | Hex     | SINT      |
| ⊕RFID_1:I.Channel[0].Data[7]     | Retry Times | 16#00 |    | Hex     | SINT      |
|                                  | Gain        | 16#01 |    | Hex     | SINT      |
|                                  | Jain        | 16#00 |    | Hex     | SINT      |

## Write AFI

The Write AFI command writes 1 byte of information into the AFI. The AFI is used to group RFID tags by application. This configuration allows the transceiver to read and write only to those tags with the specified AFI value.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 41
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0] = AFI value
- e. xx:0.Channel[0].Length = 1
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization sets the address, length data, and command. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

|       | _RFID_1:1Pt00Deta EnableWriteAFI                                      |                                                                    | Write_AFI                          |
|-------|-----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|
| 0     |                                                                       |                                                                    | ()                                 |
|       | Write_AFIRFID_1:I.Channel[0].BusyRFID_1:I.Channel[0].TagPresent       | MOV                                                                | Write_AFI_Start                    |
| 1     |                                                                       | Move<br>Source 0<br>Dest _RFID_1:O.Channel[0].Address<br>0.←       | L)<br>Write_AFI                    |
|       | _                                                                     | Move<br>Source 1<br>Dest _RRD_1:0.Channel(0).Length<br>0 ←         |                                    |
|       |                                                                       | MOV<br>Source AFL_Value<br>Dest _RFID_1:0.Chenne(0)_Dota(0)<br>0 + |                                    |
|       |                                                                       | Move<br>Source 0<br>Dest _RFID_1:0.Channe[0].Command<br>34 +       |                                    |
| 2     | Vete_AFLStart EQU<br>Source A _RFD_11.Channe(0).Command<br>Source B 0 | Move<br>Source                                                     | 41<br>0.Channel(0).Commend<br>34 + |
| 3     | Vite_AFL_StartRFD_t1.Channe(0).Busy                                   |                                                                    | Write_AFL_InProgress               |
| 4     | Wete_AFI_inProgressRFID_11.Chenne(0)Busy                              | hannel[0].Command                                                  | Write_AFI_InProgress               |
|       | Source B                                                              | 34 e<br>41                                                         |                                    |
| (End) |                                                                       |                                                                    |                                    |

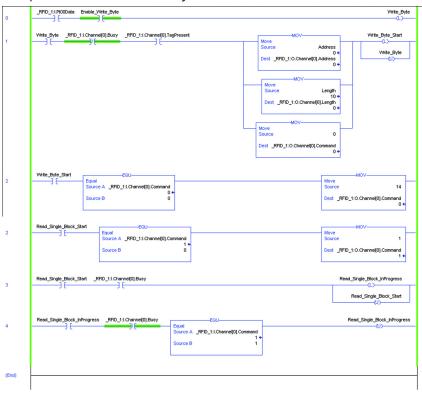
<u>Figure 31</u> shows an example of results on the input image table. The Command is showing 41 and theChError is showing 0. The data bytes are all zero. Confirmation that the AFI was written can be observed in the Get\_System\_Information\_Routine.

#### Figure 31 - Input Image Table

| RFID_1:I.Channel[0]          | {} | {} |         | AB:56RF_I |
|------------------------------|----|----|---------|-----------|
|                              | 0  |    | Decimal | BOOL      |
|                              | 0  |    | Decimal | SINT      |
|                              | 41 |    | Decimal | INT       |
|                              | 0  |    | Decimal | BOOL      |
|                              | 30 |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data     | {} | {} | Decimal | SINT[160] |
|                              | 0  |    | Decimal | SINT      |
| ERFID_1:I.Channel[0].Data[1] | 0  |    | Decimal | SINT      |
|                              | 0  |    | Decimal | SINT      |
|                              | 0  |    | Decimal | SINT      |
|                              | 0  |    | Decimal | SINT      |

## Write Byte Command

The Write Byte command writes bytes of user data to a tag. You must specify the data, the start byte, and the number of bytes to write.


- a. xx:0.Channel[0].Command = 14
- b. xx:0.Channel[0].Address = starting address to write
- c. xx:0.Channel[0].BlockSize = 0
- d. xx:0.Channel[0].Data[0...111] = the data to write
- e. xx:0.Channel[0].Length = the number of bytes to write
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

Unless a UUID is specified, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, and Data[0] values used to read multiple blocks and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address =0, the Length = 10. Data[0...9] are set to a sequential list of numbers starting with 11.



#### **Example Results**

<u>Figure 32</u> shows the output image table with the 10 bytes of data that is written to the RFID tag. The sequence is 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20.

Figure 32 - Output Image Table

| RFID_1:0.Channel[0]          | {             | }  | {} |         | AB:56RF_IN |
|------------------------------|---------------|----|----|---------|------------|
| RFID_1:0.Channel[0].Address  |               | 0  |    | Decimal | INT        |
|                              |               | 0  |    | Decimal | INT        |
|                              |               | 14 |    | Decimal | INT        |
| RFID_1:0.Channel[0].Data     | {}            |    | () | Decimal | SINT[112]  |
|                              |               | 11 |    | Decimal | SINT       |
|                              |               | 12 |    | Decimal | SINT       |
| ERFID_1:0.Channel[0].Data[2] |               | 13 |    | Decimal | SINT       |
| ERFID_1:0.Channel[0].Data[3] | 10 Bytes of   | 14 |    | Decimal | SINT       |
| ERFID_1:0.Channel[0].Data[4] | Data to Write | 15 |    | Decimal | SINT       |
|                              |               | 16 |    | Decimal | SINT       |
|                              |               | 17 |    | Decimal | SINT       |
|                              |               | 18 |    | Decimal | SINT       |
|                              |               | 19 |    | Decimal | SINT       |
|                              | (             | 20 |    | Decimal | SINT       |

After successful completion of the Write Byte command, the input image table shows the UUID of the tag.

| - RFID 1:I.Channel[0]    |                  | {}    | {} |         | AB:56RF II |
|--------------------------|------------------|-------|----|---------|------------|
| RFID_1:1.Channel[0].Busy |                  | 0     | (, | Decimal | BOOL       |
|                          | ChError = 0      | 0     |    | Decimal | SINT       |
|                          |                  | -     |    |         |            |
|                          | Command = 14     |       |    | Decimal | INT        |
|                          |                  | 0     |    | Decimal | BOOL       |
|                          |                  | 99    |    | Decimal | INT        |
| RFID_1:I.Channel[0].Data |                  | {}    | {} | Decimal | SINT[160]  |
|                          |                  | 16#0d |    | Hex     | SINT       |
|                          |                  | 16#ee |    | Hex     | SINT       |
|                          |                  | 16#e5 |    | Hex     | SINT       |
|                          | UUID of RFID Tag | 16#5b |    | Hex     | SINT       |
|                          |                  | 16#00 |    | Hex     | SINT       |
|                          |                  | 16#01 |    | Hex     | SINT       |
|                          |                  | 16#04 |    | Hex     | SINT       |
|                          |                  | 16#e0 |    | Hex     | SINT       |

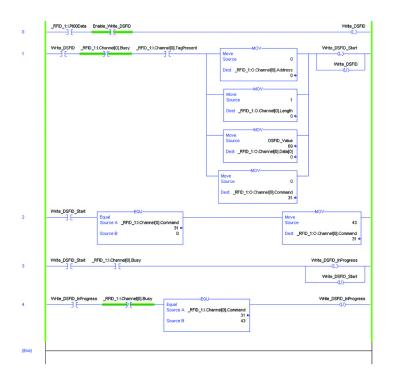
The Read\_Byte\_Routine can be used to read the data. The data is stored in the input channel data, starting at location 0.

| RFID_1:I.Channel[0]              | {                | }   | {} |         | AB:56RF_IN |
|----------------------------------|------------------|-----|----|---------|------------|
|                                  |                  | 0   |    | Decimal | BOOL       |
|                                  |                  | 0   |    | Decimal | SINT       |
|                                  | Read Command = 4 | 4   |    | Decimal | INT        |
| RFID_1:I.Channel[0].ContReadMode |                  | 0   |    | Decimal | BOOL       |
|                                  |                  | 100 |    | Decimal | INT        |
|                                  | ()               |     | {} | Decimal | SINT[160]  |
|                                  | • 11             |     |    | Decimal | SINT       |
|                                  |                  | 12  |    | Decimal | SINT       |
|                                  |                  | 13  |    | Decimal | SINT       |
|                                  | 10 Bytes of      | 14  |    | Decimal | SINT       |
|                                  | Data             | 15  |    | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[5]     |                  | 16  |    | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[6]     |                  | 17  |    | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[7]     |                  | 18  |    | Decimal | SINT       |
|                                  |                  | 19  |    | Decimal | SINT       |
|                                  |                  | 20  |    | Decimal | SINT       |

### Write DSFID

The Write DSFID (Data Storage Format Identifier) command writes 1 byte of information in the Data Storage Format Identifier (DSFID) of the RFID tag.

Set the following values in the output image table:


- a. xx:0.Channel[0].Command = 43
- b. xx:0.Channel[0].Address = 0
- c. xx:0.Channel[0].Data[0] = DSFID value
- d. xx:0.Channel[0].Length = 1
- e. xx:0.Channel[0].Reset = 0
- f. xx:0.Channel[0].Timeout = 0
- g. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- h. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

If UIDLow and UIDHI are set to 0, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, and Data[0] values used to read multiple blocks and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

The example ladder diagram is initially set for Address =0, the Length = 0. Data[0] is set to the DSFID value.



The command is executed successfully if the ChError = 0, the Command value = 43 and all Data bytes are 0.

Use the Get System Information command or the Inventory command to read the DSFID.

|                          | {}                     | {} |         | AB:56RF  |
|--------------------------|------------------------|----|---------|----------|
| RFID_1:I.Channel[0]      | {}                     | {} |         | AB:56RF  |
|                          | 0                      |    | Decimal | BOOL     |
|                          | ChError = 0 0          |    | Decimal | SINT     |
|                          | Command = 43 43        |    | Decimal | INT      |
|                          | 0                      |    | Decimal | BOOL     |
|                          | 199                    |    | Decimal | INT      |
| RFID_1:I.Channel[0].Data | ()                     | {} | Decimal | SINT[160 |
|                          | 0                      |    | Decimal | SINT     |
|                          | All Data Bytes are 0 0 |    | Decimal | SINT     |
|                          | 0                      |    | Decimal | SINT     |

### **Write Multiple Blocks**

The Write Multiple Blocks command writes to either one or two blocks of user data to a FRAM tag. This command only works on FRAM tags. Catalog number 56RF-TG-2KB is a FRAM tag.

- a. xx:0.Channel[0].Command = 11
- b. xx:0.Channel[0].Address = starting block to write
- c. xx:0.Channel[0].BlockSize = number of bytes per block
- d. xx:0.Channel[0].Data[0...xxx] = data to write
- e. xx:0.Channel[0].Length =the number of blocks to write
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

If UIDLow and UIDHi are set to 0, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

<u>Table 37</u> shows the valid values for length, block size, and the number of bytes written or each combination.

Table 37 - Valid Values

| Description   | Value |   |   |   |   |    |
|---------------|-------|---|---|---|---|----|
| Length        | 1     | 1 | 1 | 2 | 2 | 2  |
| Block Size    | 0     | 4 | 8 | 0 | 4 | 8  |
| Bytes Written | 4     | 4 | 8 | 8 | 8 | 16 |

#### **Example Routine**

In the following example routine, the initialization in Rung 1 sets the address, length, and block size values that are used to write multiple blocks and sets the command value to 0. The BlockSize, Reset, Timeout, UIDLow, and UIDHi are set to 0 in the output image table.

| 0     | _RFID_11/PI00Data Enable_V/rite_Multiple_Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Write_Multiple_Block                                              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|       | Write Multiple Block RFID 1:1Channel(0).Eusy RFID 1:1Channel(0).TeoPresent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Write_Multiple_Block_Start                                        |
| 1     | Move Address<br>Source Address<br>Source Length<br>Move Source Length<br>Dest _RFD_t:O.Channel(0)Length<br>0+<br>Move Block Size<br>Source Block Size<br>Source Block Size<br>Source 0<br>Move Move<br>Move Block Size<br>State 0<br>Move Block Size<br>0+<br>Move Block Size<br>0+<br>0+<br>0+<br>0+<br>0+<br>0+<br>0+<br>0+<br>0+<br>0+ | ()<br>Write Multiple_Block                                        |
| 2     | Read_Sngle_Block_Start Equal<br>Equal<br>Source ARFID_11.Channel(0) Command<br>1 +<br>Source B 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOV-<br>Source 1<br>Dest _RFD_1:0.Channel(0) Command<br>1 +       |
| 3     | Read_Single_Block_Start _RFD_11.Channel[0]Busy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read_Single_Block_InProgress<br>L<br>Read_Single_Block_Start<br>U |
| 4     | Read_Single_Block_InProgressRFD_11.Channel[0].Busy Equal Source A _RFID_11.Channel[0].Command f+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Read_Single_Block_InProgress                                      |
| (End) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |

#### **Example Results**

Figure 33 on page 104 shows the output image table with the data that is written (a simple numeric sequence starting at 2). Two blocks of 8 bytes each is written to the tag. The data is written to address locations 3 and 4.

#### Figure 33 - Output Image Table

| ERFID_1:0.Channel[0]          |                       | }    | {} |         | AB:56RF_II |
|-------------------------------|-----------------------|------|----|---------|------------|
|                               | Place Data in Address | 3 3  |    | Decimal | INT        |
|                               | Bytes per Block = 8   | 8    |    | Decimal | INT        |
| ERFID_1:0.Channel[0].Command  |                       | 11   |    | Decimal | INT        |
| RFID_1:0.Channel[0].Data      | {                     | }    | {} | Decimal | SINT[112]  |
|                               |                       | 9 2  |    | Decimal | SINT       |
|                               |                       | 3    |    | Decimal | SINT       |
|                               |                       | 4    |    | Decimal | SINT       |
|                               | Data for Block 1      | 5    |    | Decimal | SINT       |
|                               |                       | 6    |    | Decimal | SINT       |
| ⊕RFID_1:0.Channel[0].Data[5]  |                       | 7    |    | Decimal | SINT       |
| ⊕RFID_1:0.Channel[0].Data[6]  |                       | 8    |    | Decimal | SINT       |
| ⊕RFID_1:0.Channel[0].Data[7]  |                       | 9    |    | Decimal | SINT       |
| ⊕RFID_1:0.Channel[0].Data[8]  |                       | 0 10 |    | Decimal | SINT       |
|                               |                       | 11   |    | Decimal | SINT       |
| ⊕RFID_1:0.Channel[0].Data[10] |                       | 12   |    | Decimal | SINT       |
|                               | Data for Block 2      | 13   |    | Decimal | SINT       |
|                               |                       | 14   |    | Decimal | SINT       |
|                               |                       | 15   |    | Decimal | SINT       |
|                               |                       | 16   |    | Decimal | SINT       |
|                               |                       | 17   |    | Decimal | SINT       |

If the Write Multiple Blocks command is executed properly, the input table image results show ChError = 0, Command = 11 and Data[0-xxx]=0.

| RFID_1:I.AuxPwrFault             |                  | 0   |    | Decimal | BOOL       |
|----------------------------------|------------------|-----|----|---------|------------|
| RFID_1:I.BlockFault              |                  | 0   |    | Decimal | BOOL       |
| RFID_1:I.Channel                 |                  | {}  | {} |         | AB:56RF_IN |
| RFID_1:I.Channel[0]              |                  | {}  | {} |         | AB:56RF_IN |
|                                  |                  | 0   |    | Decimal | BOOL       |
| ■RFID_1:I.Channel[0].ChError     | ChError = 0      | 0   |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Command     | Command = 11     | 11  |    | Decimal | INT        |
| RFID_1:I.Channel[0].ContReadMode |                  | 0   |    | Decimal | BOOL       |
|                                  |                  | 521 |    | Decimal | INT        |
| RFID_1:I.Channel[0].Data         |                  | {}  | {} | Decimal | SINT[160]  |
|                                  |                  | 0   |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Data[1]     | Data Bytes are 0 | 0   |    | Decimal | SINT       |
|                                  |                  | 0   |    | Decimal | SINT       |
|                                  |                  | 0   |    | Decimal | SINT       |
|                                  |                  | 0   |    | Decimal | SINT       |

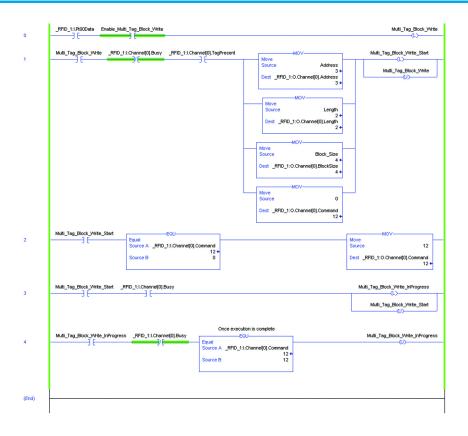
Use the Read Multiple Block command (=2) to read the data.

| RFID_1:I.Channel[0]              | {.                  | }  | {} |         | AB:56RF_IN |
|----------------------------------|---------------------|----|----|---------|------------|
|                                  |                     | 0  |    | Decimal | BOOL       |
|                                  | No errors           | 0  |    | Decimal | SINT       |
|                                  | ead Multiple Blocks | 2  |    | Decimal | INT        |
| RFID_1:I.Channel[0].ContReadMode |                     | 0  |    | Decimal | BOOL       |
|                                  |                     | 18 |    | Decimal | INT        |
| RFID_1:I.Channel[0].Data         | {.                  | }  | {} | Decimal | SINT[160]  |
| ERFID_1:I.Channel[0].Data[0]     |                     | 2  |    | Decimal | SINT       |
|                                  |                     | 3  |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Data[2]     |                     | 4  |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Data[3]     | Data in             | 5  |    | Decimal | SINT       |
|                                  | Block 3             | 6  |    | Decimal | SINT       |
|                                  |                     | 7  |    | Decimal | SINT       |
|                                  |                     | 8  |    | Decimal | SINT       |
|                                  |                     | 9  |    | Decimal | SINT       |
| ERFID_1:I.Channel[0].Data[8]     | •                   | 10 |    | Decimal | SINT       |
|                                  |                     | 11 |    | Decimal | SINT       |
|                                  | Data in             | 12 |    | Decimal | SINT       |
|                                  | Block 4             | 13 |    | Decimal | SINT       |
|                                  | BIOCK 4             | 14 |    | Decimal | SINT       |
|                                  |                     | 15 |    | Decimal | SINT       |
|                                  |                     | 16 |    | Decimal | SINT       |
|                                  |                     | 17 |    | Decimal | SINT       |

### **Multi-tag Block Write**

The Multi-tag Block Write command writes one or more blocks of user data to multiple tags in the transceiver field. The maximum number of tags in the RF field is limited to four and all tags must have the same block size.

Set the following values in the output image table:


- a. xx:0.Channel[0].Command = 12
- b. xx:0.Channel[0].Address = starting address to write
- c. xx:0.Channel[0].BlockSize = number of bytes/block
- d. xx:0.Channel[0].Data[0...xxx] = data to write
- e. xx:0.Channel[0].Length = number of blocks to write
- f. xx:0.Channel[0].Reset = 0
- g. xx:0.Channel[0].Timeout = 0
- h. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- i. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

If UIDLow and UIDHi are set to 0, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

| IMPORTANT | Length must be in 4-byte increments (for example, 4, 8, 12) for<br>ISO15693 tags or 8-byte increments (for example, 8, 16, 24) for FRAM<br>tags.                                                                                                                                                                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                             |
| IMPORTANT | <ul> <li>The BlockSize field is used to specify the number of bytes/block of the tag. Valid values are:</li> <li>0 = 4 bytes/block</li> <li>4 = 4 bytes/block</li> <li>8 = 8 bytes/block</li> <li>Typically, IS015693 tags have a block size of 4 bytes/block, and FRAM tags have a block size of 8 bytes/block.</li> </ul> |

#### **Example Routine**

In the following example, data is written to two blocks, starting with Block 3. The data is loaded into the output channel image table. Block three is populated with Data[0...3] = 11, 13, 15 and 17. Block 4 is populated with Data[4...7] = 19, 21, 23, 25.



The input channel image table shows the number of RFID tags that were written and the UUID of each RFID tag.

|                                  |                  | 0     |    | Decimal | BOOL      |
|----------------------------------|------------------|-------|----|---------|-----------|
|                                  |                  | 0     |    | Decimal | SINT      |
|                                  |                  | 12    |    | Decimal | INT       |
| RFID_1:I.Channel[0].ContReadMode |                  | 0     |    | Decimal | BOOL      |
| ERFID_1:I.Channel[0].Counter     |                  | 286   |    | Decimal | INT       |
| RFID_1:I.Channel[0].Data         |                  | {}    | {} | Decimal | SINT[160] |
|                                  | Number of Tags _ |       |    | Decimal | SINT      |
|                                  | in RF Field      | 0     |    | Decimal | SINT      |
| +RFID_1:I.Channel[0].Data[2]     |                  | 16#c8 |    | Hex     | SINT      |
|                                  |                  | 16#25 |    | Hex     | SINT      |
|                                  |                  | 16#e6 |    | Hex     | SINT      |
|                                  |                  | 16#5b |    | Hex     | SINT      |
|                                  | UUID for Tag 1   | 16#00 |    | Hex     | SINT      |
|                                  |                  | 16#01 |    | Hex     | SINT      |
|                                  |                  | 16#04 |    | Hex     | SINT      |
|                                  |                  | 16#e0 |    | Hex     | SINT      |
|                                  |                  | 16#ca |    | Hex     | SINT      |
|                                  |                  | 16#53 |    | Hex     | SINT      |
| ERFID_1:I.Channel[0].Data[12]    |                  | 16#e6 |    | Hex     | SINT      |
|                                  | UUID for Tag 2   | 16#5b |    | Hex     | SINT      |
|                                  |                  | 16#00 |    | Hex     | SINT      |
|                                  |                  | 16#01 |    | Hex     | SINT      |
|                                  |                  | 16#04 |    | Hex     | SINT      |
|                                  |                  | 16#e0 |    | Hex     | SINT      |

| RFID_1:I.Channel[0]              |                    | {.          | }       | {}   |         | AB:56RF_IN |
|----------------------------------|--------------------|-------------|---------|------|---------|------------|
| RFID_1:I.Channel[0].Busy         |                    |             | 0       |      | Decimal | BOOL       |
| RFID_1:I.Channel[0].ChError      | 0                  |             | Decimal | SINT |         |            |
|                                  |                    | 3           |         |      | Decimal | INT        |
| RFID_1:I.Channel[0].ContReadMode |                    |             | 0       |      | Decimal | BOOL       |
|                                  |                    |             | 300     |      | Decimal | INT        |
| RFID_1:I.Channel[0].Data         |                    | {.          | }       | {}   | Decimal | SINT[160]  |
|                                  |                    |             | 2       |      | Decimal | SINT       |
|                                  |                    |             | 0       |      | Decimal | SINT       |
|                                  |                    | <b>P</b> 16 | #c8     |      | Hex     | SINT       |
|                                  |                    | 16          | #25     |      | Hex     | SINT       |
|                                  |                    | 16          | #e6     |      | Hex     | SINT       |
|                                  | Tag 1 UUID         | 16          | #5b     |      | Hex     | SINT       |
|                                  |                    | 16          | #00     |      | Hex     | SINT       |
|                                  |                    | 16          | #01     |      | Hex     | SINT       |
|                                  |                    | 16          | #04     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[9]     |                    | 16          | #e0     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[10]    |                    | 1           | 11      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[11]    | Tag 1 Block 3 Data |             | 13      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[12]    |                    |             | 15      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[13]    |                    | •           | 17      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[14]    |                    | •           | 19      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[15]    | Tag 1 Block 4 Data |             | 21      |      | Decimal | SINT       |
|                                  |                    |             | 23      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[17]    |                    | •           | 25      |      | Decimal | SINT       |
|                                  | •                  | 16          | #ca     |      | Hex     | SINT       |
|                                  |                    | 16          | #53     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[20]    |                    | 16          | #e6     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[21]    |                    | 16          | #5b     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[22]    | Tag 2 UUID         | 16          | #00     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[23]    |                    | 16          | #01     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[24]    |                    | 16          | #04     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[25]    |                    | 16          | #e0     |      | Hex     | SINT       |
| +RFID_1:I.Channel[0].Data[26]    |                    | •           | 11      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[27]    | Tag 1 Block 3 Data |             | 13      |      | Decimal | SINT       |
|                                  |                    |             | 15      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[29]    |                    | -           | 17      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[30]    |                    |             | 19      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[31]    | Tag 1 Block 4 Data |             | 21      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[32]    |                    |             | 23      |      | Decimal | SINT       |
| +RFID_1:I.Channel[0].Data[33]    |                    | 1           | 25      |      | Decimal | SINT       |

Use the Read Multi Tag Block command (=3) to read the blocks and confirm that the data was written.

#### **Write Single Block**

The Write Single Block command writes one block of user data to an RFID tag.

Set the following values in the output image table:

- a. xx:0.Channel[0].Command = 10
- b. xx:0.Channel[0].Address = starting address to write
- c. xx:0.Channel[0].BlockSize = 0, 4, or 8
- d. xx:0.Channel[0].Data[0...112] = data to write
- e. xx:0.Channel[0].Length = 0, 4, or 8
- f. xx:0.Channel[0].BlockSize = 0, 4, or 8
- g. xx:0.Channel[0].Reset = 0
- h. xx:0.Channel[0].Timeout = 0
- i. xx:0.Channel[0].UIDLow = 0 (or UIDLow)
- j. xx:0.Channel[0].UIDHi = 0 (or UIDHi)

If UIDLow and UIDHi are set to 0, this command operates on the first tag in the field. Specify a UUID in xx:0.Channel[0].UIDLow and xx:0.Channel[0].UIDHi to perform the command on a specific tag.

The Length and Block Size fields are used to specify the number of bytes/block of the tag. Valid values are:

- 0 = 4 bytes/block
- 4 = 4 bytes/block
- 8 = 8 bytes/block

Typically, ISO15693 tags have a block size of 4 bytes/block, and FRAM tags have a block size of 8 bytes/block.

#### **Example Routine**

In the following example, 4 bytes of data is written to Block 3. The data is loaded into the output channel image table. Block three is populated with Data[0...3] = 41, 42, 43, and 44.

| 0     | _RFID_11PI0Dota Enable_Write_Single_Block                                                                                                                 | Write_Single_Block                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1     | Vitte_Single_Block     RFID_11.Channel(0).Eusy     .RFID_11.Channel(0).TegPresent     Move     Address       3     Dest_RFID_110.Channel(0).Address     3 | Write_Single_Block_Start                                     |
| 2     | Multi_Teg_Block_VMte_Start Equal EQU-<br>Source A _RFD_11Channel(0).Command 12 +<br>Source B 0                                                            | MOV-<br>Source 12<br>Dest_RFD_1:0.Channel(0).Command<br>12 + |
| 3     | Multi_Teg_Block_Write_Start _RFD_t1:Channel[0]Busy                                                                                                        | Multi_Tag_Block_Write_InProgress<br>(                        |
| 4     | Multi_Teg_Block, Write_InProgress                                                                                                                         | Muti_Tag_Block_Write_InProgress                              |
| (End) |                                                                                                                                                           |                                                              |

#### **Example Results**

The output image table shows that the address is set to Block 3; the block size is 4 and the command is 10. The data to be written to block 3 is 41, 42, 43, and 44.

| ERFID_1:0.Channel[0]         | {}                   | {} |         | AB:56RF_II |
|------------------------------|----------------------|----|---------|------------|
| ERFID_1:0.Channel[0].Address | Write to Block 3 3   |    | Decimal | INT        |
|                              | Block Size is 4 4    |    | Decimal | INT        |
| ERFID_1:0.Channel[0].Command | 10                   |    | Decimal | INT        |
| RFID_1:0.Channel[0].Data     | {}                   | {} | Decimal | SINT[112]  |
|                              | • 41                 |    | Decimal | SINT       |
| ERFID_1:0.Channel[0].Data[1] | 4 Bytes of Data 42   |    | Decimal | SINT       |
|                              | to Write to Block 43 |    | Decimal | SINT       |
|                              | • 44                 |    | Decimal | SINT       |

Upon successful completion of the write block command, the Input Image table shows that Command = 10 and ChError = 0. The input channel data fields are all zero.

| RFID_1:I.Channel[0]              | {}                 | {} |         | AB:56RF  |
|----------------------------------|--------------------|----|---------|----------|
|                                  | 0                  |    | Decimal | BOOL     |
|                                  | No errors 0        |    | Decimal | SINT     |
|                                  | 10                 |    | Decimal | INT      |
| RFID_1:I.Channel[0].ContReadMode | 0                  |    | Decimal | BOOL     |
|                                  | 5                  |    | Decimal | INT      |
| RFID_1:I.Channel[0].Data         | {}                 | {} | Decimal | SINT[160 |
|                                  | 0                  |    | Decimal | SINT     |
|                                  | Data Bytes are 0 0 |    | Decimal | SINT     |
|                                  | 0                  |    | Decimal | SINT     |

| Use the Read Single Block command (=1), v | with option flag set to zero, to read the contents of |
|-------------------------------------------|-------------------------------------------------------|
| the tag in block 3.                       |                                                       |

|                          | {                | .) {) | ł       | AB:56RF |
|--------------------------|------------------|-------|---------|---------|
|                          |                  | 0     | Decimal | BOOL    |
|                          | No Errors        | 0     | Decimal | SINT    |
|                          | = Read Block Cmd | 1     | Decimal | INT     |
|                          |                  | 0     | Decimal | BOOL    |
|                          |                  | 6     | Decimal | INT     |
| RFID_1:I.Channel[0].Data | {                | .) {) | Decimal | SINT[16 |
|                          | •                | 41    | Decimal | SINT    |
|                          | Data From        | 42    | Decimal | SINT    |
|                          | Block 3          | 43    | Decimal | SINT    |
|                          | •                | 44    | Decimal | SINT    |

| Continuous Read Mode  | The Continuous Read command is used for specialty applications that require high line speeds (up to 3 ms). See <u>Continuous Read Mode on page 120</u> for details on this command.                                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stop Continuous Read  | The Stop Continuous Read command is used with the Continuous Read command for specialty applications that require high line speeds (up to 3 ms). See <u>Continuous Read Mode on page 120</u> for details on this command. |
| Teach Continuous Read | The Teach Continuous Read command is used to train the interface for Continuous Read operations. See <u>Teach Continuous Read on page 122</u> for details on this command.                                                |

## Notes:

# **SLC Code Examples**

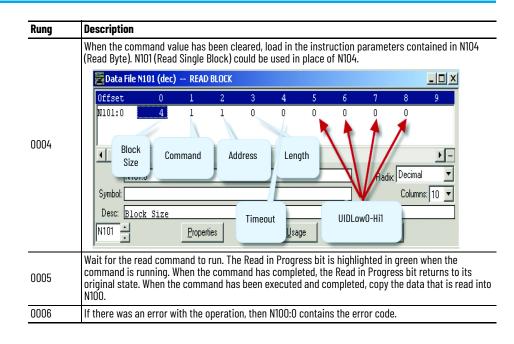
This sample code example uses an SLC-5/05 with a catalog number 56RF-IN-IPD22 interface block.

## **Read Byte Routine**

The Read Byte command (value =4) reads a user-specified number of bytes from a tag, starting at a user-specified address. Additionally, an Option Flag can be set to return the UUID of the tag.

- Option Flag 0
  - Returns the specified user data
- Option Flag 1 Returns the UUID of the tag and the specified user data

**IMPORTANT** This command operates only on the first tag in the field.


### **Example Routine**

The following example code is for an SLC-5/05.



# **Example Routine**

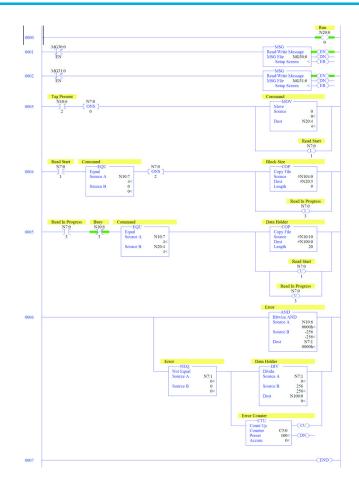
| Rung | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0000 | Place RFID interface into the Run mode. The bit must be highlighted in green. If the bit is not gr right-click it and click Toggle Bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0001 | Read Input Image. Double-click the EEM box to enter the setup screen. Input Size is 116 byte<br>words). Click the MultiHop tab to configure an EtherNet/IP <sup>TM</sup> device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 0002 | Write Output Image. Double-click the MSG box to enter the setup screen. Output size is 124 to words). Click the MultiHop tab to configure an EtherNet/IP device.         Vertex       Vertex         Vertex       Vertex |  |  |



## Notes:

# MicroLogix 1400 Code Examples

# **Read Byte**


The Read Byte command (value =4) reads a user-specified number of bytes from a tag, starting at a user-specified address. Additionally, an Option Flag can be set to return the Universally Unique Identifier (UUID) of the tag.

- Option Flag 0
  - Returns the specified user data
- Option Flag 1 Returns the UUID of the tag and the specified user data

**IMPORTANT** This command operates only on the first tag in the field.

# **Example Routine**

| Rung | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0000 | Place RFID interface into the Run Mode. The bit must be highlighted in green. If the bit is not green, right-click it and click Toggle Bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0001 | Read Input Image. Double-click the MSG box to enter the setup screen. Input size is 116 bytes (58 words). Click the MultiHop tab to configure an EtherNet/IP <sup>TH</sup> device.         Image: Device State of Data Receive Data Communication Command: Clearerie Data Table Address (Receive): 116 (Send): NAA         Target Device Message Timeout: 33         Image: Device Service Transmiting (ST) 0         Message Transmiting (ST) 0         Local / Remote: Local / MultiHop: Yes         Evended Rounding Info File(RK): ELCI1.0         Service: Fiead Assembly         Service: Fiead Assembly         Service: Service Code (hex): 2         Instance (hex): 2         Instance (hex): 2         Instance (hex): 2         Instance (hex): 3         Error Code(Hex): 0         No errors                                                                                                                                                                                                                                                                             |  |  |
| 0002 | Write Output Image. Double-click the MSG box to enter the setup screen. Output size is 124 bytes (62 words). Click the MultiHop tab to create an EtherNet/IP device.         Image: Controller         Image: Controller         Image: Controller         Image: Receive)         NAM         Image: Timeout:         Image: Timeout: |  |  |
| 0003 | The Tag Present bit is highlighted in green when a tag is present. When a tag is present, clear the command value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 0004 | When the command value has been cleared, load in the instruction parameters contained in N104 (Read Byte). N101 (Read Single Block) could be used in place of N104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 0005 | Wait for the read command to run. The Read in Progress bit is highlighted in green when the command is running. When the command has completed, the Read in Progress bit returns to its original state. When the command has been executed and completed, copy the data that is read into N100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0006 | If there was an error with the operation, then N100:0 contains the error code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |



## Write Byte

The Write Byte command (value = 14) writes bytes of user data to a tag. You can specify the data, the start byte, and the number of bytes to write.

**IMPORTANT** This command operates only on the first tag in the field.

### **Example Routine**

| Rung | Description                                                                                                                                                                                                                                                                                        |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0000 | Place RFID interface into the Run Mode. The bit must be highlighted in green. If the bit is not green, right-click it and click Toggle Bit.                                                                                                                                                        |  |
| 0001 | Read Input Image. Double-click the MSG box to enter the Setup Screen. Input Size is 116 bytes (58 words). Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                               |  |
| 0002 | Write Output Image. Double-click the MSG box to enter the Setup Screen. Output Size is 124 bytes (62 words). Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                            |  |
| 0003 | The Tag Present bit is highlighted in green when a tag is present. When a tag is present, clear the command value.                                                                                                                                                                                 |  |
| 0004 | When the command value has been cleared, load in the instruction parameters contained in N114 (Write Byte). N110 (Write Single Block) could be used in place of N114.                                                                                                                              |  |
| 0005 | Wait for the write command to run. The Write in Progress bit is highlighted in green when the command is running. When the command has completed, the Write in Progress bit returns to its original state. When the command has been executed and completed, copy the data that is read into N100. |  |
| 0006 | If there was an error with the operation, then N100:0 contains the error code.                                                                                                                                                                                                                     |  |

## **Read Multiple Blocks**

The Read Multiple Blocks command (value = 2) reads multiple blocks of user data from a tag. Additionally, Option Flags can be set to return information such as the UUID or the Data Storage Format Identifier (DSFID) of the tag.

• Option Flag 0

Returns multiple blocks of user data

• Option Flag 1 Returns multiple blocks of user data and the security status of each block

| IMPORTANT | Unless a UUID is specified, this command operates on the first tag in |
|-----------|-----------------------------------------------------------------------|
|           | the field.                                                            |

#### **Example Routine**

| Rung | Description                                                                                                                                                                                                                                                                                           |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0000 | Place RFID interface into the Run Mode. The bit must be highlighted in green. If the bit is not green, right-click it and click Toggle Bit.                                                                                                                                                           |  |
| 0001 | Read Input Image. Double-click the MSG box to enter the Setup Screen. Input Size is 116 bytes (58<br>Words.) Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                               |  |
| 0002 | Write Output Image. Double-click the MSG box to enter the Setup Screen. Output Size is 124 bytes (62 Words). Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                               |  |
| 0003 | The Tag Present bit is highlighted in green when a tag is present. When a tag is present, clear the command value.                                                                                                                                                                                    |  |
| 0004 | When the command value has been cleared, load in the instruction parameters contained in N102 (Read Multiple Blocks).                                                                                                                                                                                 |  |
| 0005 | Wait for the read command to run. The Read in Progress bit is highlighted in green when the command<br>is running. When the command has completed, the Read in Progress bit returns to its original state.<br>When the command has been executed and completed, copy the data that is read into N100. |  |
| 0006 | If there was an error with the operation, then N100:0 contains the error code.                                                                                                                                                                                                                        |  |

### **Write Multiple Blocks**

The Write Multiple Blocks command (value = 11) writes multiple blocks of user data to an FRAM tag.

**IMPORTANT** This command only works on FRAM tags. Unless a UUID is specified, this command operates on the first tag in the field.

#### **Example Routine**

| Rung | Description                                                                                                                                                                                                                                                                                                 |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0000 | Place RFID interface into the Run Mode. The bit must be highlighted in green. If the bit is not green, right-click it and click Toggle Bit.                                                                                                                                                                 |  |
| 0001 | Read Input Image. Double-click the MSG box to enter the Setup Screen. Input Size is 116 bytes (58<br>Words.) Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                                     |  |
| 0002 | Write Output Image. Double-click the MSG box to enter the Setup Screen. Output Size is 124 bytes (62<br>Words). Click the MultiHop tab to configure an EtherNet/IP device.                                                                                                                                  |  |
| 0003 | The Tag Present bit is highlighted in green when a tag is present. When a tag is present, clear the command value.                                                                                                                                                                                          |  |
| 0004 | When the command value has been cleared, load in the instruction parameters contained in N111 (Write Multiple Blocks).                                                                                                                                                                                      |  |
| 0005 | Wait for the write command to run. The Write in Progress bit is highlighted in green when the<br>command is running. When the command has completed, the Write in Progress bit returns to its<br>original state. When the command has been executed and completed, copy the data that is read into<br>N100. |  |
| 0006 | If there was an error with the operation, then N100:0 contains the error code.                                                                                                                                                                                                                              |  |

### **Input Image Layout**

**Output Image Layout** 

See <u>CIP Information on page 131</u> for details on the Input Image Layout.

See <u>CIP Information on page 131</u> for details on the Output Image Layout.

# **RFID Tag Speed**

<u>Table 38</u>...<u>Table 41 on page 120</u> are guides to help determine the amount of information that can be written to/read from an RFID tag, which is based on the speed of your application. For example, to read 8 bytes consistently from a tag using the square transceiver, your line speed must be 0.827 ms or slower.

If you have a high-speed application, it is best to choose the largest transceiver, larger tag, which provides the largest antenna range. The larger tag provides the longest time that the tag is in the field for read/write functions and also helps with tag misalignment issues.

If your tag is stopped when all read/write functions occur, and tag misalignment is not an issue, you can use smaller transceivers.

# **IMPORTANT** We recommend that the tag is stopped if large amounts of data are written to/read from the tag.

| Dutoo | Max Tag Speed (ms) |            |
|-------|--------------------|------------|
| Bytes | Read               | Write      |
| 4     | 1.488095           | 1.328609   |
| 8     | 1.378676           | 1.121915   |
| 16    | 1.202887           | 0.8566533  |
| 32    | 0.9578544          | 0.5811701  |
| 64    | 0.6802721          | 0.3535235  |
| 112   | 0.4743833          | 0.2227833  |
| 160   | 0.3641661          | 0.1626369  |
| 2000  | 0.03674939         | 0.01432665 |

#### Table 38 - Rectangular (80x90) Transceiver

#### Table 39 - Square (40x40) Transceiver

| Putoo | Max Tag Speed (ms) |             |
|-------|--------------------|-------------|
| Bytes | Read               | Write       |
| 4     | 0.8928571          | 0.7971656   |
| 8     | 0.8272058          | 0.6731489   |
| 16    | 0.7217322          | 0.513992    |
| 32    | 0.5747126          | 0.348702    |
| 64    | 0.4081633          | 0.2121141   |
| 112   | 0.28463            | 0.13367     |
| 160   | 0.2184996          | 0.09758213  |
| 2000  | 0.02204964         | 0.008595988 |

| Bytes | Max Tag Speed (ms) |            |
|-------|--------------------|------------|
| Dytes | Read               | Write      |
| 4     | 0.1984127          | 0.1771479  |
| 8     | 0.1838235          | 0.1495886  |
| 16    | 0.1603849          | 0.1142204  |
| 32    | 0.1277139          | 0.07748935 |
| 64    | 0.09070295         | 0.04713646 |
| 112   | 0.06325111         | 0.02970444 |
| 160   | 0.04855547         | 0.02168492 |
| 2000  | 0.004899919        | 0.00191022 |

Table 40 - M18 Transceiver

#### Table 41 - M30 Transceiver

| Bytes | Max Tag Speed (ms) |             |  |  |
|-------|--------------------|-------------|--|--|
| Dytes | Read               | Write       |  |  |
| 4     | 0.3373016          | 0.3011515   |  |  |
| 8     | 0.3125             | 0.2543007   |  |  |
| 16    | 0.2726544          | 0.1941748   |  |  |
| 32    | 0.2171137          | 0.1317319   |  |  |
| 64    | 0.154195           | 0.08013199  |  |  |
| 112   | 0.1075269          | 0.05049755  |  |  |
| 160   | 0.0825443          | 0.03686436  |  |  |
| 2000  | 0.008329863        | 0.003247374 |  |  |

### **Continuous Read Mode**

#### **Command Objective**

Perform tag read operations as fast as possible.

#### Operation

Command 5 is issued from the controller to place an interface RFID channel into continuous read mode; no additional commands are required from the controller to retrieve information from a tag. The read type that is issued would be a Read Multiple Block or a Read Single Block depending on the number of blocks requested. The maximum number of blocks that can be read at one time is 10. Each time the interface reads a tag successfully, the counter value increments by 1. If there was an issue reading the tag, the counter value does not increment and the ChError indicates the error code value.

While the interface is in this mode, it rejects all other commands sent to it for that channel except a Stop Continuous Read. The interface does not perform its normal poll cycle on that channel while it is in this mode of operation. During Continuous Read Mode, the ContReadMode and Busy bit is set to true.

When the interface receives a stop command, Command 6, it reverts to the normal mode of operation and resume the polling cycle. Continuous Read mode can also be canceled by issuing a channel reset (reset bit in the output image word set to 1).

When using a 50 mm (1.97 in.) disk tag, catalog number 56RF-TR-8090 transceiver, and reading 4 bytes of data, it can be possible to achieve a line speed of up to 3 ms.

#### **Modes of Operation**

Only one type of mode of operation can be used on each channel. To change modes you must issue a Stop Continuous Read, and then reissue a Start Continuous Read with the new mode. Both channels can be configured for the same mode or different modes simultaneously. Modes of operation are limited based on the model number of the interface.

56RF-IN-IPS12 Interface Block

- One RFID channel (Channel 0)
- One discrete input and one discrete output
- Support modes 0 and 1 only

#### 56RF-IN-IPD22 Interface Block

- Two RFID channels (Channel 0, Channel 1)
- One discrete input and one discrete output
- Support modes 0, and 1 only.

The single input can be used for either channel.

56RF-IN-IPD22A Interface Block

- Two RFID channels (Channel 0, Channel 1)
- Two discrete inputs
- Support modes 0, 1, 2, and 3

The same input can be used for either channel.

#### **Mode Overview**

| Mode      | Description                                                                                                                                                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Mode O | The interface waits for the delay time, sends out a read, obtains data, and returns that data back to the PLC. This cycle repeats until a Stop Continuous Read command is issued.                                                               |
| 2. Mode 1 | The interface waits for input point 0 to turn 0N, waits for the delay timer to expire then sends out a read, obtains data, and returns that data back to the PLC. This cycle repeats until a Stop Continuous Read command is issued.            |
| 3. Mode 2 | The interface waits for input point 1 to turn ON, waits for the delay timer to expire then sends out a read, obtains data, and returns that data back to the PLC. This cycle repeats until a Stop Continuous Read command is issued.            |
| 4. Mode 3 | The interface waits for both input point 0 and 1 to turn 0N, waits for the delay timer to expire then sends out a read, obtains data, and returns that data back to the PLC. This cycle repeats until a Stop Continuous Read command is issued. |

#### **Command Structure**

- a. xx:0.Channel[0].Reset =0
- b. xx:0.Channel[0].Command = 5
- c. xx:0.Channel[0].BlockSize = Bytes per Block in the tag
- d. xx:0.Channel[0].Address = Starting Block
- e. xx:0.Channel[0].Length = Number of blocks to read
- f. xx:0.Channel[0].Timeout = Delay time between sending commands
- g. xx:0.Channel[0].UIDLow = 0
- h. xx:0.Channel[0].UIDHi = 0
- i. xx:0.Channel[0].Data[0] = Mode x
- j. xx:0.Channel[0].Data[1] = Option Flag

| Command        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address        | Block within the tag to start read operations from.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BlockSize      | Size in bytes per block of the tag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Length         | Number of blocks to read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Timeout        | Delay time between sending command attempts in Mode O.<br>Delay time after input condition is true before sending commands in modes 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| UIDLow/UIDHigh | Can be used to target only a specific tag for read operations, otherwise this value would to read any tag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Mode x         | Specifies the mode of operation for the Continuous Read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Option Flag    | Used to specify the mode of one or more Read Multiple/Read Single Block commands.<br>A zero value would only read the data that is requested starting at the address that is<br>specified, for the number of blocks specified in the Length field. A value of 1 would read and<br>return both the security block status and the tag data.<br>For modes 13, you can either set the delay time on their own or they can train the interface<br>and the transceiver so that the value is determine automatically based on their system setup<br>and line speed. A delay time of 0 causes the interface to send out the command as soon as it<br>sees that the input condition goes true. For mode 0, there is no ability to train the system. |  |  |  |

#### Table 42 - Commands

#### **Teach Continuous Read**

#### **Command Objective**

This operation is valid only for modes 1...3 and is used to train the interface to the approximate delay time that must be used before it sends out the read command, which is based on input conditions and tag speeds.

#### **Operation**

Command 8 is issued from the Controller to place an RFID interface channel into teach mode.

When first entering Teach Mode (Phase 1), the interface waits for one or more input conditions to go true, and then poll for tag detection. Once 10 good detections have occurred, the unit enters phase 2.

During Phase 2, the unit waits for one or more input conditions to go true, then issues the Read Multiple/Read Single Block command after the predetermined time delay and adjusts the delay time as necessary. Once 10 good reads in a row have occurred, the unit exits teach mode and reports back the average and recommended delay time in milliseconds.

If the interface is unable to obtain 10 good reads in a row, it decrements the delay time by 1 ms and starts again in phase 2. If the delay time has been decremented more than 30 ms from the average, the interface exits teach mode and reports back the recommended delay time of -1. A -1 value indicates that the interface cannot determine what the best delay time would be due to variations in tag speed.

Phase progression in teach mode can be monitored by viewing the counter value in the input image table. Phase 1 is always a value <10, Phase 2 is always a value >10. Once the counter reaches 20, the interface exits teach mode and reports the average and recommended delay times. You must load the recommended delay time value into the Timeout field before initiating a continuous read.

During Teach Mode, the ContReadMode and Busy bit are set to true.

An issued channel reset can cancel Teach mode (reset bit in the output image word set to 1).

#### **Command Structure**

- a. xx:0.Channel[0].Reset =0
- b. xx:0.Channel[0].BlockSize =Bytes per Block in the tag
- c. xx:0.Channel[0].Command = 8
- d. xx:0.Channel[0].Address = Starting Block
- e. xx:0.Channel[0].Length = Number of Blocks
- f. xx:0.Channel[0].Timeout = 0
- g. xx:0.Channel[0].UIDLow = 0
- h. xx:0.Channel[0].UIDHi = 0
- i. xx:0.Channel[0].Data[0] = Mode x
- j. xx:0.Channel[0].Data[1] = Option Flag

## Notes:

# **RFID Interface Block Webpage**

The RFID interface block webpage provides diagnostic and configuration for the RFID interface block. You can access the webpage by entering the IP address of the interface block into a web browser. The interface block must have Ethernet connectivity and power to be viewable on the webpage.

#### Home

The home page allows you to view basic information about the interface block. Data cannot be changed on the home page. The Device Description and Device Location are specified and can be changed on the Device Identity tab in the Configuration section.

| xpand Minimize 🔶 Home           |                      |                                            |
|---------------------------------|----------------------|--------------------------------------------|
| ome                             |                      |                                            |
| agnostics Device Name           | 56RF-IN-IPD22        |                                            |
| onfiguration Device Description |                      |                                            |
| Device Location                 |                      | Resources                                  |
| Ethernet Address (MAC)          | 00:00:bc:e5:d0:1b    | Visit AB.com for additional<br>Information |
| IP Address                      | 192.168.1.195        |                                            |
| Product Revision                | 1.001 Build 8        | Contacts                                   |
| Firmware Version Date           | Aug 3 2011, 14:35:32 |                                            |
| Serial Number                   | A000B777             |                                            |
| Status                          | Awaiting Connection  |                                            |
| Uptime                          | 00h:35m:15s          |                                            |

### **Diagnostics**

The Diagnostic page has three tabs of view-only detailed information on the status of the interface block. The tabs show Diagnostic Overview, Network Settings, and Ethernet Statistics. The I/O Connections tab contains a field that allows you to change the webpage refresh rate.

| Expand Minimize                        | Diagnostic Overview Network Settings | Ethernet Statistics I/O Connecti | ions           |     |
|----------------------------------------|--------------------------------------|----------------------------------|----------------|-----|
| agnostics                              | Ring Status                          |                                  | Module Setings |     |
| Diagnostic Overview                    | Network Topology                     | Linear                           | Switches       | 195 |
| Network Settings                       | Network Status                       | Normal                           |                |     |
| Ethernet Statistics<br>I/O Connections | Ring Supervisor                      | 0.0.0.0 00:00:00:00:00:00        |                |     |
| onfiguration                           | System Resource Utilization          |                                  |                |     |
|                                        | CPU Utilization                      | 10%                              |                |     |
|                                        | Module Uptime                        | 00h:35m:26s                      |                |     |
|                                        | CIP Connection Statics               |                                  |                |     |
|                                        | Current CIP Msg Connections          | 0                                |                |     |
|                                        | CIP Msg Connection Limit             | 10                               |                |     |
|                                        | Max Msg Connections Observed         | 0                                |                |     |
|                                        | Current CIP I/O Connections          | 0                                |                |     |
|                                        | CIP I/O Connection Limit             | 11                               |                |     |
|                                        | Max I/O Connections Observed         | 0                                |                |     |
|                                        | Conn Opens                           | 0                                |                |     |
|                                        | Open Errors                          | 0                                |                |     |
|                                        | Conn Closes                          | 0                                |                |     |
|                                        | Conn Timeouts                        | 0                                |                |     |

# **Network Settings**

| Expand Minimize     | Diagnostic Overview Network    | Settings Ethernet Statistics I/ | O Connections        |                                |
|---------------------|--------------------------------|---------------------------------|----------------------|--------------------------------|
| Home<br>Diagnostics | Network Interface              |                                 | Ethernet Port 1      |                                |
| Diagnostic Overview | Ethernet Address (MAC)         | 00:00:bc:e5:d0:1b               | Interface State      | Enabled                        |
| Network Settings    | IP Address                     | 192.168.1.195                   | Link Status          | Active                         |
| Ethernet Statistics | Subnet Mask                    | 255.255.255.0                   | Media Speed          | 100 Mbps                       |
| I/O Connections     | Default Gateway                |                                 | Duplex               | Full Duplex                    |
| Configuration       | Primary Name Server            |                                 | Autonegotiate Status | Autonegotiate Speed and Duplex |
|                     | Secondary Name Server          |                                 |                      |                                |
|                     | Default Domain Name            |                                 |                      |                                |
|                     | Host Name                      |                                 | Ethernet Port 2      |                                |
|                     | Name Resolution                | DNS Enabled                     | Interface State      | Enabled                        |
|                     |                                |                                 | Link Status          | Inactive                       |
|                     |                                |                                 | Media Speed          | 100 Mbps                       |
|                     | Ethernet Interface Configurati |                                 | Duplex               | Full Duplex                    |
|                     | Obtain Network Configuration   | Switches                        | Autonegotiate Status | Autonegotiate Speed and Duplex |

## **Ethernet Statistics**

| Expand Minimize     | Diagnostic Overview Network       | Settings Ethernet Statistics I/O Conne | ctions                 |                                |
|---------------------|-----------------------------------|----------------------------------------|------------------------|--------------------------------|
| D Home              | Diagnostis of criticity incention |                                        |                        |                                |
| Diagnostics         | Ethernet Port 1                   |                                        | Ethernet Port 2        |                                |
| Diagnostic Overview | Interface State                   | Enabled                                | Interface State        | Enabled                        |
| Network Settings    | Link Status                       | Active                                 | Link Status            | Inactive                       |
| Ethernet Statistics | Media Speed                       | 100 Mbps                               | Media Speed            | 100 Mbps                       |
| I/O Connections     | Duplex                            | Full Duplex                            | Duplex                 | Full Duplex                    |
| Configuration       | Autonegotiate Status              | Autonegotiate Speed and Duplex         | Autonegotiate Status   | Autonegotiate Speed and Duplex |
|                     | Media Counters Port 1             |                                        | Media Counters Port 2  |                                |
|                     | Alignment Errors                  | 0                                      | Alignment Errors       | 0                              |
|                     | FCS Errors                        | 0                                      | FCS Errors             | 0                              |
|                     | Single Collisions                 | 0                                      | Single Collisions      | 0                              |
|                     | Multiple Collisions               | 0                                      | Multiple Collisions    | 0                              |
|                     | SQE Test Errors                   | 0                                      | SQE Test Errors        | 0                              |
|                     | Deferred Transmissions            | 0                                      | Deferred Transmissions | 0                              |
|                     | Late Collisions                   | 0                                      | Late Collisions        | 0                              |
|                     | Excessive Collisions              | 0                                      | Excessive Collisions   | 0                              |
|                     | MAC Transmit Errors               | 0                                      | MAC Transmit Errors    | 0                              |
|                     | Carrier Sense Errors              | 0                                      | Carrier Sense Errors   | 0                              |
|                     | Frame Too Long                    | 0                                      | Frame Too Long         | 0                              |
|                     | MAC Receive Errors                | 0                                      | MAC Receive Errors     | 0                              |
|                     | Interface Counters                |                                        |                        |                                |
|                     | In Octets                         | 1241835                                |                        |                                |
|                     | In Ucast Packets                  | 8574                                   |                        |                                |
|                     | In NUcast Packets                 | 12                                     |                        |                                |
|                     | In Discards                       | 0                                      |                        |                                |
|                     | In Errors                         | 0                                      |                        |                                |
|                     | In Unknown Protos                 | 0                                      |                        |                                |
|                     | Out Octets                        | 2332830                                |                        |                                |
|                     | Out Ucast Packets                 | 7333                                   |                        |                                |
|                     | Out NUcast Packets                | 29                                     |                        |                                |
|                     | Out Discards                      | 0                                      |                        |                                |
|                     | Out Errors                        | 0                                      |                        |                                |

# I/O Connections

| Allen-Bradley 56R | F-IN-IPD22                                                                                          | Rockwe<br>Automatie |
|-------------------|-----------------------------------------------------------------------------------------------------|---------------------|
| Expand Minimize   | Diagnostic Overview Network Settings Ethernet Statistics I/O Connections                            |                     |
| Diagnostics       | Conn # Uptime Missed Rx O-T Conn T-O Conn O-T Size T-O Size O-T Type T-O Type O-T API (msec) (msec) | Timeout<br>(msec)   |
| Network Settings  | Seconds Between Refresh: 15 Disable Refresh with 0.                                                 |                     |
| I/O Connections   | L<br>Copyright © 2011 Rockwell Automation, Inc. All Rights Reserved.                                |                     |

# **Configuration**

To access the configuration section of the RFID interface block webpage, a username and password are required. The default username is Admin, and there is no password by default. The username and password can be changed on the Device Services tab.

**IMPORTANT** If the username and password are lost, the interface block must be reset to default before it can be accessed again. The username and password are reset to the default values.

## **Device Identity**

Change the device name, description, or location. Changes take place after power to the interface block has been cycled.

| Allen-Bradley 56R   | F-IN-IPD22                                                                        | Rockwe<br>Automatic                                                             |
|---------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Expand Minimize     | Device Identity Network Configura                                                 | tion Device Services                                                            |
| Diagnostics         | Device Information                                                                |                                                                                 |
| Diagnostic Overview | Device Name                                                                       | 56RF-IN-IPD22                                                                   |
| Ethernet Statistics | Device Description                                                                |                                                                                 |
| Configuration       | Device Location                                                                   |                                                                                 |
| Device Identity     | Apply Changes                                                                     |                                                                                 |
| Device Services     |                                                                                   |                                                                                 |
|                     | Note: Values on this page are in non-vo<br>Changes to these parameters do not tak | latile memory.<br>e effect until the ArmorBlock has been reset or power cycled. |
|                     | Copyright © 2011 Rockwell Automation,                                             | Inc. All Rights Reserved.                                                       |

# **Network Configuration**

| n-Bradley 56RF               | -IN-IPD22                             |                                  | Aı |
|------------------------------|---------------------------------------|----------------------------------|----|
| Minimize                     | Device Identity Network Configuration | Device Services                  |    |
|                              | Initial Network Configuration         |                                  |    |
| cs<br>ostic Overview         |                                       | Provide (Bullet)                 |    |
| rk Settings                  | Ethernet Interface Configuration      | Dynamic (DHCP) 💌                 |    |
| et Statistics<br>innections  | Network Interface                     |                                  |    |
| ition                        | IP Address                            | 192.168.1.1                      |    |
| Identity<br>rk Configuration | Subnet Mask                           | 255.255.255.0                    |    |
| Services                     | Gateway Address                       |                                  |    |
|                              | Primary Name Server                   |                                  |    |
|                              | Secondary Name Server                 |                                  |    |
|                              | Domain Name                           |                                  |    |
|                              | Ethernet Link Port 1                  |                                  |    |
|                              |                                       | Enabled V                        |    |
|                              | Port 1 Enable                         |                                  |    |
|                              | Autonegotiate Status                  | Autonegotiate Speed and Duplex 💌 |    |
|                              | Select Port Speed                     | 100 Mbps -                       |    |
|                              | Select Duplex Mode                    | Full Duplex 💙                    |    |
|                              | Ethernet Link Port 2                  |                                  |    |
|                              | Port 2 Enable                         | Enabled 👻                        |    |
|                              | Autonegotiate Status                  | Autonegotiate Speed and Duplex   |    |
|                              | Select Port Speed                     | 100 Mbps 👻                       |    |
|                              | Select Duplex Mode                    | Full Duplex 👻                    |    |
|                              | Apply Changes                         |                                  |    |
|                              | Apply changes                         |                                  |    |

# **Device Services**

| Allen-Bradley 56R     | F-IN-IPD2            | 2                                    |                                |               | Roc<br>Autor |
|-----------------------|----------------------|--------------------------------------|--------------------------------|---------------|--------------|
| Expand Minimize       | Device Identity      | Network Configuration Device S       | Services                       |               |              |
| Home                  | 1                    |                                      |                                |               |              |
| Diagnostics           | Service              | Description                          | Status                         | Enable        |              |
| Diagnostic Overview   | HTTP                 | Web Server                           | running                        |               |              |
| Network Settings      |                      |                                      |                                |               |              |
| Ethernet Statistics   | Set Password         |                                      |                                |               |              |
| I/O Connections       |                      |                                      |                                |               |              |
| Configuration         | New Password         |                                      |                                |               |              |
| Device Identity       | Confirm Password     |                                      |                                |               |              |
| Network Configuration | Committeestord       |                                      |                                |               |              |
| Device Services       |                      |                                      |                                |               |              |
|                       | Apply Change         | es                                   |                                |               |              |
|                       |                      |                                      |                                |               |              |
|                       | Note: Values on this | page are in non-volatile memory.     |                                |               |              |
|                       | Changes to these par | ameters do not take effect until the | ArmorBlock has been reset or p | power cycled. |              |
|                       | Copyright © 2011 Ro  | ckwell Automation, Inc. All Rights F | Reserved.                      |               |              |
|                       |                      | ,                                    |                                |               |              |

# **Error Codes for RFID Interface Block**

## **Error Codes**

The error codes for the RFID interface block are stored in the input for each channel. In the examples in the manual, the error codes are stored in the image table RFID\_1:I:Channel[0].ChError and RFID\_1:I:Channel[1].ChError.

| Error Codes | Status Word              | Binary |  |
|-------------|--------------------------|--------|--|
| 0           | ОК                       | 0000   |  |
| 1           | Transceiver not found    | 0001   |  |
| 2           | Invalid Response         | 0010   |  |
| 3           | Invalid Parameter        | 0011   |  |
| 4           | No Tag Detected          | 0100   |  |
| 5           | Instruction Timed Out    | 0101   |  |
| 6           | Block Access Error       | 0110   |  |
| 7           | Format Error             | 0111   |  |
| 8           | Tag Communications Error | 1000   |  |
| 9           | Address Error            | 1001   |  |
| 10          | Mismatch Error           |        |  |
| 11          | Internal Channel Error   |        |  |
| 12          | Malformed Packet         |        |  |
| 13          | Unit in Program Mode     |        |  |
| 14          | Reserved                 | 1110   |  |
| 15          | Module Error             | 1111   |  |
| 16          | Internal Error           | 10000  |  |

• OK (Decimal O)

Indicates that there are no issues with the channel in question when the decimal value of these bits is equal to zero.

• Transceiver not found (Decimal 1)

Indicates that communication with the transceiver for the specified channel has been lost.

Invalid Response (Decimal 2)

Indicates that the response to a command is not what was expected.

Invalid Parameter (Decimal 3)

Indicates that either a passed or received parameter was out of bounds.

- No Tag Detected (Decimal 4) Indicates that a command was attempted on a channel but no tag was detected in the field.
- Instruction Timed Out (Decimal 5)
   Indicates that the timeout value that is associated with a command was exceeded before a response could be obtained.

- Block Access Error (Decimal 6)
   Indicates that either:
  - A read command attempted to read a block but was denied access.
  - A write command attempted to write to a block but was denied access.
- Format Error (Decimal 7)

Indicates that the format of the command or response was invalid.

• Tag Communications Error (Decimal 8)

Indicates that the interface block was not able to complete command execution with a tag before the tag left the field or the Output Channel Timeout is set too short. For example, set the Output Channel Timeout to 100 ms and then try to read 112 bytes of data from a catalog number 56RF-TG-30 tag. This occurs when the address in Read/ Write Byte is out of the supported range.

- Address Error (Decimal 9)
- Indicates that the block address value was out of bounds for the tag.
- Mismatch Error (Decimal 10) Indicates that there are more tags that are detected in the field than the unit can process.
- Internal Channel Error (Decimal 11) Indicates that there is some internal issue with channel (hardware fault).
- Malformed Packet (Decimal 12)
  - Indicates an issue with the command packet that the transceiver received.
- Unit in Program Mode (Decimal 13) Indicates that a command was issued but the module is in program mode.
- Module Error (Decimal 15) Indicates that there is some internal issue interface block (hardware fault).
- Internal Error (Decimal 16) AOI specific error.

# **CIP Information**

## Product Codes and Name Strings

| Strings                                            | Table 43 - Product Codes and Name Strings                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                 |                                                       |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|
|                                                    | Product Typ                                                                                                                                                                | e Produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ct Code                                                                                                                                                                                                                                                         | Cat. No.                        | Identity Object Name String                           |
|                                                    | 139                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 56                                                                                                                                                                                                                                                            | SRF-IN-IPS12                    | RFID Adapter 1 Port + 11n/1 Out                       |
|                                                    | 139                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 56                                                                                                                                                                                                                                                            | RF-IN-IPD22                     | RFID Adapter 2 Port + 1In/1 Out                       |
|                                                    | 139                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 56                                                                                                                                                                                                                                                            | RF-IN-IPD22A                    | RFID Adapter 2 Port + 2In/0 Out                       |
| CIP Explicit Connection<br>Behavior<br>CIP Objects | 0 connection<br>explicit conne<br>connection. A<br>connection w<br>service to one<br>• The Va<br>• The Da<br>• Attribu<br>The following<br>window into th<br>instances (co | D interface block allows connected explicit messages to drive user of<br>ection exists, or when an I/O connection exists in the idle state. One E<br>connection is allowed to send explicit control messages via an Activ<br>tion. An EtherNet/IP Class 3 explicit connection becomes the explicit<br>tion when it becomes the first EtherNet/IP Class 3 explicit connectio<br>to one of the following:<br>The Value attribute of any DOP instance (class code 0x09).<br>The Data attribute of any output (consumed) Assembly Instance (class<br>Attribute 3 or 4 of the Control Supervisor Object (class code 0x29).<br>owing CIP <sup>™</sup> objects are covered in the following subsections. CIP obj<br>into the devices properties that can be read/written to. Each CIP Cla<br>es (copies of a class structure), and attributes for each instance. More<br>e instance of a class. | idle state. One EtherNet/IP Class 3<br>iges via an Active Explicit<br>mes the explicit control<br>plicit connection to send a set<br>(x09).<br>y Instance (class code 0x04).<br>s code 0x29).<br>sections. CIP objects provide a<br>to. Each CIP Class contains |                                 |                                                       |
|                                                    | Class                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Object                                                                                                                                                                                                                                                          |                                 |                                                       |
|                                                    | 0x0001                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Identity Object                                                                                                                                                                                                                                                 |                                 |                                                       |
|                                                    | 0x0004                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Assembly Object                                                                                                                                                                                                                                                 |                                 |                                                       |
|                                                    | 0x0008                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discrete Input Poir                                                                                                                                                                                                                                             | nt Object                       |                                                       |
|                                                    | 0x0009                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discrete Output Po                                                                                                                                                                                                                                              | int Object                      |                                                       |
| Identity Object Class Code<br>Ox0001               | ,                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | e following attrib              | formation about the device.<br>outes:                 |
|                                                    | Attribute ID                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | Data Type                       |                                                       |
|                                                    | <u>ו</u>                                                                                                                                                                   | Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vendor<br>Device Type                                                                                                                                                                                                                                           |                                 | 170                                                   |
|                                                    | 2<br>3                                                                                                                                                                     | Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Device Type<br>Droduct Code                                                                                                                                                                                                                                     | UINT                            | 139<br>4, 5, or 6                                     |
|                                                    | 3                                                                                                                                                                          | Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Product Code                                                                                                                                                                                                                                                    |                                 |                                                       |
|                                                    | 4                                                                                                                                                                          | Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Revision<br>Major Revision<br>Minor Revision                                                                                                                                                                                                                    | Structure of:<br>USINT<br>USINT | The initial release is Major Rev. 1, Minor<br>Rev. 1. |
|                                                    | _                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                               |                                 |                                                       |

Figure 43 lists the product codes and name strings for the EtherNet/IP™ interface block.

Status

Serial Number

Product Name String Length ASCII String

Get

Get

Get

WORD

UDINT

Structure of: USINT STRING See Table 44 on page 133.

Product Code specific

Unique number for each device

5

6

7

The following common services are implemented for Instance 1.

| Service Code | Implement | ted for: | Service Name          |
|--------------|-----------|----------|-----------------------|
| Service coue | Class     | Instance | Service Name          |
| 0x01         | Yes       | Yes      | Get_Attributes_All    |
| 0x05         | No        | Yes      | Reset                 |
| 0x0E         | Yes       | Yes      | Get_Attributes_Single |

To access the Identity Object, the creation of a Message Instruction (MSG) to be configured as a CIP Generic type is required.

| Message Configuration - CIP                                                                        | ×                                                                              |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Configuration Communication Tag                                                                    |                                                                                |
| Message Type: CIP Generic                                                                          | •                                                                              |
| Service Custom  Type: Service 1 (Hex) Class: 1 (Hex) Instance: 1 Attribute 1 (Hex)                 | Source Element:<br>Source Length: 0 (Bytes)<br>Destination CIP_Data<br>New Tag |
| Enable      Enable Waiting      Start     Error Code: Extended Error Code: Error Path: Error Text: | Done Length: 47                                                                |
| OK                                                                                                 | Cancel Apply Help                                                              |

- Service Code: 1- Get Attribute All
- Class: 1 Identity Object
- Instance: 1 First instance
- Attribute: 1 First attribute
- Destination: CIP\_Data a SINT[100] array to hold the data

| Name         | A 81 | Value 🔸 | Style   | Data Type |
|--------------|------|---------|---------|-----------|
| ⊡-CIP_Data   |      | {}      | Decimal | SINT[100] |
| CIP_Data[0]  |      | 1       | Decimal | SINT      |
| CIP_Data[1]  |      | 0       | Decimal | SINT      |
| CIP_Data[2]  |      | -117    | Decimal | SINT      |
|              |      | 0       | Decimal | SINT      |
| CIP_Data[4]  |      | 5       | Decimal | SINT      |
| CIP_Data[5]  |      | 0       | Decimal | SINT      |
| CIP_Data[6]  |      | 1       | Decimal | SINT      |
|              |      | 1       | Decimal | SINT      |
| CIP_Data[8]  |      | 100     | Decimal | SINT      |
| CIP_Data[9]  |      | 0       | Decimal | SINT      |
| CIP_Data[10] |      | 85      | Decimal | SINT      |
| CIP_Data[11] |      | -71     | Decimal | SINT      |
| CIP_Data[12] |      | 0       | Decimal | SINT      |
| CIP_Data[13] |      | -96     | Decimal | SINT      |
| CIP_Data[14] |      | 32      | Decimal | SINT      |
| CIP_Data[15] |      | 'R'     | ASCII   | SINT      |
| CIP_Data[16] |      | 'F'     | ASCII   | SINT      |
| CIP_Data[17] |      | 'I'     | ASCII   | SINT      |

- CIP\_Data[0]...[1]= Vendor (1=Allen-Bradley)
- CIP\_Data[2]...[3]= Device Type (139=RFID)
- CIP\_Data[4]...[5]=Device Code (5=56RF-IN-IPS12)
- CIP\_Data[6]= Major Revision (1)
- CIP\_Data[7]= Minor Revision (1)
- CIP\_Data[8]...[9]= Status (100 decimal, 00000001100100 binary)
- CIP\_Data[10]...[13]= Serial Number (A000B955)
- CIP\_Data[14]= Product Name Length (32 bytes)
- CIP\_Data[15]-[n]= Product Name

| Bits | Name                      | Description                             |
|------|---------------------------|-----------------------------------------|
| 0    | Owned                     | 0=Not Owned, 1=Owned by a Master        |
| 1    | Reserved                  | Reserved                                |
| 2    | Configured                | 0=Not configured, 1=Configured          |
| 3    | Reserved                  | Reserved                                |
| 47   | Extended Device Status    | See <u>Table 45</u>                     |
| 8    | Minor Recoverable Fault   | 1=Detected a recoverable minor fault    |
| 9    | Minor Unrecoverable Fault | 1=Detected a nonrecoverable minor fault |
| 10   | Major Recoverable Fault   | 1=Detected a recoverable major fault    |
| 11   | Major Unrecoverable Fault | 1=Detected a nonrecoverable major fault |
| 1215 | Reserved                  | Reserved                                |

#### Table 44 - Device Status (CIP\_Data[8...9])

#### Table 45 - Values for the Extended Device Status (Bits 4...7)

| Value | Description                                                  |
|-------|--------------------------------------------------------------|
| 0     | Self-Testing or Unknown                                      |
| 1     | Firmware Update in Progress                                  |
| 2     | At least one faulted I/O connection                          |
| 3     | No I/O connections established                               |
| 4     | Non-Volatile Configuration Bad                               |
| 5     | Major Fault                                                  |
| 6     | At least one I/O connection in run mode                      |
| 7     | At least one I/O connection is established, all in idle mode |
| 8 & 9 | Reserved                                                     |
| 1015  | Vendor specific                                              |

## Assembly Object Class Code 0x0004

The Assembly Object binds attributes of multiple objects, which allows data to be sent to or received from each object over one connection. Controllers that cannot create and establish a class 1(scheduled) connection can use the Assembly Object in a message instruction to obtain both the input and output assemblies of the RFID interface.

The following services are implemented for the Assembly Object:

| Service Code | Implemented for | d for: Service Name | Sorvice Name         |
|--------------|-----------------|---------------------|----------------------|
| Selvice coue | Class           | Instance            | Selvice Maille       |
| 0x0E         | Yes             | Yes                 | Get_Attribute_Single |
| 0x10         | No              | Yes                 | Set_Attribute_Single |
| 0x18         | No              | Yes                 | Get_Member           |

Different connection instances are needed for each RFID interface, which is based on the model. These class 3 connection instances are different than the class 1 instances that are used by a ControlLogix<sup>®</sup> or CompactLogix<sup>™</sup> processor due to the limitations within the SLC<sup>™</sup> and MicroLogix<sup>™</sup> for handling Send and Receive data.

Use <u>Table 46</u> to determine the class 3 connection instance and Send/Receive size for your unit.

| Table 46 - Class 3 Connection Instances with Size (in bytes | ze (in bytes) |
|-------------------------------------------------------------|---------------|
|-------------------------------------------------------------|---------------|

| Cat. No.       | Input | Size | Output | Size | Config | Size |
|----------------|-------|------|--------|------|--------|------|
| 56RF-IN-IPS12  | 120   | 64   | 130    | 64   | 103    | 16   |
| 56RF-IN-IPD22  | 121   | 116  | 131    | 124  | 109    | 20   |
| 56RF-IN-IPD22A | 122   | 116  | 132    | 124  | 112    | 24   |

## Read the Input Image Table of a 56RF-IN-IPD22 Interface Block with a MicroLogix 1400

| General MultiHop Send Data Receive Data                                                                                                                                                                                     |                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This Controller<br>Channel: 1 [(ntegral)<br>Communication Command: CIP Generic<br>Data Table Address (Receive): N10:0<br>Size in Bytes (Receive): 116 (Send): N/A<br>Target Device<br>Message Timeout : 33                  | Control Bits<br>Ignore if timed out (TO): 0<br>Break Connection (BK): 0<br>Awaiting Execution (EW): 0<br>Error (ER): 0<br>Message done (DN): 1<br>Message Transmitting (ST): 0<br>Message Enabled (EN): 0 |
| Local / Remote : Local MultiHop: Yes<br>Extended Routing Info File(RIX): RIX11:0<br>Service: Read Assembly Service Code (hex): E<br>Class (hex): 4 (dec): 4<br>Instance (hex): 73 (dec): 121<br>Attribute (hex): 3 (dec): 3 | Error<br>Error Code(Hex): 0                                                                                                                                                                               |
| Error Description<br>No errors                                                                                                                                                                                              |                                                                                                                                                                                                           |

- N10:0 is the data table address where the input image is stored and spans N10:0...N10:57.
- The number of bytes to receive is 116 (58 words).
- The extended routing file (RIX11:0) is used to store the Multi-Hop routing information.
- Service is type Read Assembly
- Class 4 is the Assembly Instance Class
- Instance 79h is the input image connection instance.
- Attribute 3 is the assembly attribute for the input image table

| MSG   | - MG30:0 : (1 Elements)  |            |                           |               |
|-------|--------------------------|------------|---------------------------|---------------|
| Gener | al MultiHop Send Data Re | ceive Data |                           |               |
|       |                          |            |                           |               |
|       | Ins = Add Hop            |            | Del = Remove Hop          |               |
|       | From Device              | From Port  | To Address Type           | To Address    |
|       | This MicroLogix          | Channel 1  | EtherNet/IP Device (str.) | 192.168.1.212 |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |

The Multi-Hop information is used to configure the communications path from the MicroLogix to the RFID interface.

# Input Image (56RF-IN-IPD22 Interface Block)

| Word          | Description              | Word            | Description            |
|---------------|--------------------------|-----------------|------------------------|
| N10:0 - N10:1 | Module Connection Status | N10:9           | Length                 |
| N10:2         | Module Status            | N10:10 - N10:31 | Data                   |
| N10:3         | Reserved                 | N10:32          | Channel[1] Diagnostics |
| N10:4         | Block Status             | N10:33          | Command Value          |
| N10:5         | I/O Data                 | N10:34          | Counter Value          |
| N10:6         | Channel[0] Diagnostics   | N10:35          | Length                 |
| N10:7         | Command Value            | N10:36 - N10:57 | Data                   |
| N10:8         | Counter Value            |                 | ·                      |

#### Module Status

| Bit | Definition               | Bit | Definition                |
|-----|--------------------------|-----|---------------------------|
| 0   | Run Status               | 8   | Reserved                  |
| 1   | Block Fault              | 9   | Reserved                  |
| 2   | Aux Power Fault          | 10  | Reserved                  |
| 3   | Reserved                 | 11  | Reserved                  |
| 4   | Pt00 Input Fault         | 12  | Pt00 Output Fault         |
| 5   | Pt00 Open Wire           | 13  | Pt00No Load               |
| 6   | Pt00 Input Short Circuit | 14  | Pt00 Output Short Circuit |
| 7   | Reserved                 | 15  | Reserved                  |

#### I/O Data

| Bit | Definition | Bit | Definition    |  |
|-----|------------|-----|---------------|--|
| 0   | PtOO Data  | 8   | Pt00 Readback |  |
| 1   | Reserved   | 9   | Reserved      |  |
| 2   | Reserved   | 10  | Reserved      |  |
| 3   | Reserved   | 11  | Reserved      |  |
| 4   | Reserved   | 12  | Reserved      |  |
| 5   | Reserved   | 13  | Reserved      |  |
| 6   | Reserved   | 14  | Reserved      |  |
| 7   | Reserved   | 15  | Reserved      |  |

# Channel[n] Diagnostics

| Bit | Definition           | Bit | Definition |  |
|-----|----------------------|-----|------------|--|
| 0   | Reset                | 8   | Error Code |  |
| 1   | Fault                | 9   | Error Code |  |
| 2   | Tag Present          | 10  | Error Code |  |
| 3   | Busy                 | 11  | Error Code |  |
| 4   | Reset in Progress    | 12  | Reserved   |  |
| 5   | Continuous Read Mode | 13  | Reserved   |  |
| 6   | Reserved             | 14  | Reserved   |  |
| 7   | Reserved             | 15  | Reserved   |  |

# Input Image (56RF-IN-IPD22A Interface Block)

| Word          | Description              | Word            | Description            |
|---------------|--------------------------|-----------------|------------------------|
| N10:0 - N10:1 | Module Connection Status | N10:9           | Length                 |
| N10:2         | Module Status            | N10:10 - N10:31 | Data                   |
| N10:3         | Reserved                 | N10:32          | Channel[1] Diagnostics |
| N10:4         | Block Status             | N10:33          | Command Value          |
| N10:5         | I/O Data                 | N10:34          | Counter Value          |
| N10:6         | Channel[0] Diagnostics   | N10:35          | Length                 |
| N10:7         | Command Value            | N10:36 - N10:57 | Data                   |
| N10:8         | Counter Value            |                 |                        |

#### Module Status

| Bit | Definition               | Bit | Definition               |
|-----|--------------------------|-----|--------------------------|
| 0   | Run Status               | 8   | Pt01 Input Fault         |
| 1   | Block Fault              | 9   | Pt01 Open Wire           |
| 2   | Aux Power Fault          | 10  | Pt01 Input Short Circuit |
| 3   | Reserved                 | 11  | Reserved                 |
| 4   | Pt00 Input Fault         | 12  | Reserved                 |
| 5   | PtOO Open Wire           | 13  | Reserved                 |
| 6   | Pt00 Input Short Circuit | 14  | Reserved                 |
| 7   | Reserved                 | 15  | Reserved                 |

#### I/O Data

| Bit | Definition | Bit | Definition |  |
|-----|------------|-----|------------|--|
| 0   | PtOO Data  | 8   | Reserved   |  |
| 1   | Pt01 Data  | 9   | Reserved   |  |
| 2   | Reserved   | 10  | Reserved   |  |
| 3   | Reserved   | 11  | Reserved   |  |
| 4   | Reserved   | 12  | Reserved   |  |
| 5   | Reserved   | 13  | Reserved   |  |
| 6   | Reserved   | 14  | Reserved   |  |
| 7   | Reserved   | 15  | Reserved   |  |

# Channel[n] Diagnostics

| Bit | Definition           | Bit | Definition |
|-----|----------------------|-----|------------|
| 0   | Reset                | 8   | Error Code |
| 1   | Fault                | 9   | Error Code |
| 2   | Tag Present          | 10  | Error Code |
| 3   | Busy                 | 11  | Error Code |
| 4   | Reset in Progress    | 12  | Reserved   |
| 5   | Continuous Read Mode | 13  | Reserved   |
| 6   | Reserved             | 14  | Reserved   |
| 7   | Reserved             | 15  | Reserved   |

# Input Image (56RF-IN-IPS12 Interface Block)

| Word          | Description              | Word            | Description            |
|---------------|--------------------------|-----------------|------------------------|
| N10:0 - N10:1 | Module Connection Status | N10:6           | Channel[0] Diagnostics |
| N10:2         | Module Status            | N10:7           | Command Value          |
| N10:3         | Reserved                 | N10:8           | Counter Value          |
| N10:4         | Block Status             | N10:9           | Length                 |
| N10:5         | I/O Data                 | N10:10 - N10:31 | Data                   |

#### Module Status

| Bit | Definition               | Bit | Definition                |
|-----|--------------------------|-----|---------------------------|
| 0   | Run Status               | 8   | Reserved                  |
| 1   | Block Fault              | 9   | Reserved                  |
| 2   | Aux Power Fault          | 10  | Reserved                  |
| 3   | Reserved                 | 11  | Reserved                  |
| 4   | Pt00 Input Fault         | 12  | Pt00 Output Fault         |
| 5   | PtOO Open Wire           | 13  | Pt00 No Load              |
| 6   | Pt00 Input Short Circuit | 14  | Pt00 Output Short Circuit |
| 7   | Reserved                 | 15  | Reserved                  |

#### I/O Data

| Bit | Definition | Bit | Definition    |  |
|-----|------------|-----|---------------|--|
| 0   | PtOO Data  | 8   | Pt00 Readback |  |
| 1   | Reserved   | 9   | Reserved      |  |
| 2   | Reserved   | 10  | Reserved      |  |
| 3   | Reserved   | 11  | Reserved      |  |
| 4   | Reserved   | 12  | Reserved      |  |
| 5   | Reserved   | 13  | Reserved      |  |
| 6   | Reserved   | 14  | Reserved      |  |
| 7   | Reserved   | 15  | Reserved      |  |

## Channel[n] Diagnostics

| Bit | Definition           | Bit | Definition |
|-----|----------------------|-----|------------|
| 0   | Reset                | 8   | Error Code |
| 1   | Fault                | 9   | Error Code |
| 2   | Tag Present          | 10  | Error Code |
| 3   | Busy                 | 11  | Error Code |
| 4   | Reset in Progress    | 12  | Reserved   |
| 5   | Continuous Read Mode | 13  | Reserved   |
| 6   | Reserved             | 14  | Reserved   |
| 7   | Reserved             | 15  | Reserved   |

Write to the Output Image Table of a 56RF-IN-IPD22 Interface Block with a MicroLogix 1400

| General MultiHop Send Data Receive Data                                                                                                                                                                                                                                                                                                                         |                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| This Controller<br>Channel: [1 (Integral)<br>Communication Command: [CIP Generic<br>(Send): N20:0<br>Size in Bytes (Receive): [N/A (Send): [124]                                                                                                                                                                                                                | Control Bits<br>Ignore if timed out (TO): 0<br>Break Connection (BK): 0<br>Awaiting Execution (EW): 0 |
| Target Device                                                                                                                                                                                                                                                                                                                                                   | Error (ER): [0<br>Message done (DN): [1<br>Message Transmitting (ST): [0<br>Message Enabled (EN): [0  |
| Local / Remote :         Local MultiHop:         Yes           Extended Routing Info File(RIX):         RIX12:0         Service:         Service:         10           Class (hex):         4         (dec):         4         11           Instance (hex):         83         (dec):         131           Attribute (hex):         3         (dec):         3 | Error<br>Error Code(Hex): 0                                                                           |
| Error Description<br>No errors                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |

- N20:0 is the data table address to store the output image and spans N20:0...N20:61.
- The number of bytes to send is 124 (62 words).
- The extended routing file (RIX12:0) is used to store the Multi-Hop routing information.
- Service is type Write Assembly
- Class 4 is the Assembly Instance Class
- Instance 83h is the output image connection instance.
- Attribute 3 is the assembly attribute for the output image table

|       | ,                        |            | 1 2                       |               |
|-------|--------------------------|------------|---------------------------|---------------|
| 🗃 MSG | - MG31:0 : (1 Elements)  |            |                           | <u>_   ×</u>  |
| Gener | al MultiHop Send Data Re | ceive Data |                           |               |
|       |                          |            |                           | 1             |
|       |                          |            |                           |               |
|       | Ins = Add Hop            |            | Del = Remove Hop          |               |
|       | From Device              | From Port  | To Address Type           | To Address    |
|       | This MicroLogix          | Channel 1  | EtherNet/IP Device (str:) | 192.168.1.212 |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |
|       |                          |            |                           |               |

The Multi-Hop information is used to configure the communications path from the MicroLogix to the RFID interface.

# Input Image (56RF-IN-IPD22 Interface Block)

| Word         | Description      | Word         | Description      |
|--------------|------------------|--------------|------------------|
| N20:0        | Module Data      | N20:12N10:31 | Data             |
| N20:1        | Reserved         | N20:32       | Channel[1] Reset |
| N20:2        | Channel[0] Reset | N20:33       | Block Size       |
| N20:3        | Block Size       | N20:34       | Command          |
| N20:4        | Command          | N20:35       | Address          |
| N20:5        | Address          | N20:36       | Length           |
| N20:6        | Length           | N20:37       | Timeout          |
| N20:7        | Timeout          | N20:38N20:39 | UIDLow           |
| N20:8N20:9   | UIDLow           | N20:40N20:41 | UIDHi            |
| N20:10N20:11 | UIDHi            | N20:42N20:61 | Data             |

#### Module Data

| Bit | Definition | Bit | Definition |
|-----|------------|-----|------------|
| 0   | Run Mode   | 8   | Pt00 Data  |
| 1   | Reserved   | 9   | Reserved   |
| 2   | Reserved   | 10  | Reserved   |
| 3   | Reserved   | 11  | Reserved   |
| 4   | Reserved   | 12  | Reserved   |
| 5   | Reserved   | 13  | Reserved   |
| 6   | Reserved   | 14  | Reserved   |
| 7   | Reserved   | 15  | Reserved   |

# Input Image (56RF-IN-IPD22A Interface Block)

| Word         | Description      | Word         | Description      |
|--------------|------------------|--------------|------------------|
| N20:0        | Module Data      | N20:12N10:31 | Data             |
| N20:1        | Reserved         | N20:32       | Channel[1] Reset |
| N20:2        | Channel[0] Reset | N20:33       | Block Size       |
| N20:3        | Block Size       | N20:34       | Command          |
| N20:4        | Command          | N20:35       | Address          |
| N20:5        | Address          | N20:36       | Length           |
| N20:6        | Length           | N20:37       | Timeout          |
| N20:7        | Timeout          | N20:38N20:39 | UIDLow           |
| N20:8N20:9   | UIDLow           | N20:40N20:41 | UIDHi            |
| N20:10N20:11 | UIDHi            | N20:42N20:61 | Data             |

#### Module Data

| Bit | Definition | Bit | Definition |
|-----|------------|-----|------------|
| 0   | Run Mode   | 8   | Reserved   |
| 1   | Reserved   | 9   | Reserved   |
| 2   | Reserved   | 10  | Reserved   |
| 3   | Reserved   | 11  | Reserved   |
| 4   | Reserved   | 12  | Reserved   |
| 5   | Reserved   | 13  | Reserved   |
| 6   | Reserved   | 14  | Reserved   |
| 7   | Reserved   | 15  | Reserved   |

#### Input Image (56RF-IN-IPS12 Interface Block)

| Word  | Description      | Word         | Description |
|-------|------------------|--------------|-------------|
| N20:0 | Module Data      | N20:6        | Length      |
| N20:1 | Reserved         | N20:7        | Timeout     |
| N20:2 | Channel[0] Reset | N20:8N20:9   | UIDLow      |
| N20:3 | Block Size       | N20:10N20:11 | UIDHi       |
| N20:4 | Command          | N20:12N10:31 | Data        |
| N20:5 | Address          |              |             |

#### Module Data

| Bit | Definition | Bit | Definition |
|-----|------------|-----|------------|
| 0   | Run Mode   | 8   | Pt00 Data  |
| 1   | Reserved   | 9   | Reserved   |
| 2   | Reserved   | 10  | Reserved   |
| 3   | Reserved   | 11  | Reserved   |
| 4   | Reserved   | 12  | Reserved   |
| 5   | Reserved   | 13  | Reserved   |
| 6   | Reserved   | 14  | Reserved   |
| 7   | Reserved   | 15  | Reserved   |

## Read the Input Image Table of a 56RF-IN-IPD22 Interface Block with an SLC-5/05

| Error Description | This Controller  Channel : 1 Size in Words (Receive Data): 59 Data Table Address (Receive Data): 10 Target Device  Message Timeout [x1 sec]: 23 MultiHop: Yes Service: Read Assembly Service Code (hex): E Class (hex): 47 (dec): 41 Instance [hex): 79 (dec): 121 Attribute (hex): 3 (dec): 3 | Message Control Bits     Ignore if timed out (T0): ①     Awaiting Execution (EW): ①     Continuous Run (C0): ①     Error (ER): ①     Done (DN): ①     Transmitting (ST): ①     Enabled (EN): ①     Waiting for Queue Space : ①     Error     Error Code (hex): ① |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The main difference between the MicroLogix 1400 and the SLC-5/05 is that the SLC uses an EEM instruction instead of an MSG instruction, but the setup is similar. The routing information for the EEM is stored within the Control Block address (N30:0)

- N10:0 is the data table address where the input image is stored and spans N10:0...N10:57.
- The size in words is 58 (116 bytes).
- Service is type Read Assembly
- Class 4 is the Assembly Instance Class
- Instance 79h is the input image connection instance.
- Attribute 3 is the assembly attribute for the input image table

| 🔁 EEM - N30:0 : (58 Elements)                                                                                                                                       |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| General MultiHop Send Data Receive Data                                                                                                                             |                                                      |
| Ins = Add Hop Del = Remov                                                                                                                                           | /e Hop                                               |
| From Device From Port To Address Type                                                                                                                               | To Address                                           |
| This SLC500 1 EtherNet/IP Device (str.)                                                                                                                             | 192.168.1.212                                        |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
| ۲<br>۲                                                                                                                                                              |                                                      |
| <u> </u>                                                                                                                                                            |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
| EEM - N31:0 : (58 Elements)                                                                                                                                         | <u>×</u>                                             |
| General MultiHop Send Data Receive Data                                                                                                                             | 1                                                    |
| This Controller                                                                                                                                                     | Message Control Bits                                 |
| Channel: 1                                                                                                                                                          | Ignore if timed out (TO): 0                          |
| Size in Words (Receive Data):         0         (Send Data):         62           Data Table Address (Receive Data):         N/A         (Send Data):         N20:0 | Awaiting Execution (EW): 0<br>Continuous Run (CO): 0 |
|                                                                                                                                                                     | Error (ER): 0                                        |
| Target Device                                                                                                                                                       | Done (DN): 0                                         |
| Message Timeout [x1 sec]: 23                                                                                                                                        | Transmitting (ST): 1                                 |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     | waiting for Queue Space .                            |
|                                                                                                                                                                     | Error                                                |
| Attribute (hex): 3 (dec): 3                                                                                                                                         | Error Code (hex):0                                   |
|                                                                                                                                                                     |                                                      |
| Error Description                                                                                                                                                   |                                                      |
| No errors                                                                                                                                                           |                                                      |
|                                                                                                                                                                     |                                                      |
|                                                                                                                                                                     |                                                      |
| MultiHop: Yes<br>Service: Write Assembly Service Code (hex): 10<br>Class (hex): 4 (dec): 4<br>Instance (hex): 83 (dec): 131<br>Attribute (hex): 3 (dec): 3          | Enabled (EN): 1<br>Waiting for Queue Space : 0       |

- N20:0 is the data table address to store the output image and spans N20:0...N20:61.
- The Send Data size is 62 (124 bytes).
- Service is type Write Assembly
- Class 4 is the Assembly Instance Class
- Instance 83h is the output image connection instance.
- Attribute 3 is the assembly attribute for the output image table

| 🚰 EEM - N31:0 : (58 Elements | )            |                           |               |  |
|------------------------------|--------------|---------------------------|---------------|--|
| General MultiHop Send Data   | Receive Data |                           |               |  |
|                              |              |                           |               |  |
| Ins = Add Hop                |              | Del = Remove Ho           | p             |  |
| From Device                  | From Port    | To Address Type           | To Address    |  |
| This SLC500                  | 1            | EtherNet/IP Device (str.) | 192.168.1.212 |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
| •                            |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
|                              |              |                           |               |  |
| μ                            |              |                           |               |  |

| Class 1 Connections           | <ul> <li>Class 1 connections are used to transfer I/O data, and can be established to the Assembly Object instances. Each Class 1 connection establishes two data transports, one consuming and one producing. The heartbeat instances are used for connections that can access only inputs. Class 1 uses UDP transport.</li> <li>Total number of supported Class 1 connections equals 2 (total for: exclusive owner + input only + listen-only)</li> <li>Supported API: 23200 ms (The minimum API can be higher if processor resources become a problem)</li> <li>T-&gt;0 Connection type: Point-to-point, multicast</li> <li>O-&gt;T Connection type: Point-to-point</li> <li>Supported trigger type: Cyclic, change of state</li> </ul> The producing instance can be assigned to multiple transports, with any combination of multicast and point-to-point connection types. Only one Exclusive-owner connection is supported at each time. If an Exclusive-owner connection is already established and an originator tries to establish a new Exclusive-owner connection, an Ownership conflict (general status = 0x01, extended status = 0x0106) error code |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                               | is returned.<br>For a connection to be established, the requested data sizes must be an exact match of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                               | connections points that the connection tries to connect to. If the requested and actual sizes do not match, an Invalid connection size (general status = 0x01, extended status = 0x0109) error code is returned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Exclusive Owner<br>Connection | This connection type is used for controlling the outputs of the module and must not be dependent on any other condition. Only one exclusive owner connection can be opened against the module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                               | If an exclusive owner connection is already opened a Connection in use (general status = 0x01, extend status = 0x0100) error code is returned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                               | <ul> <li>Connection point 0 -&gt; T must be Assembly Object, Instance 3, 162 or 166 (162 for product codes &lt;= 0x100 only, 166 for product codes &gt; 0x100 only).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                               | <ul> <li>Connection point T -&gt; 0 must be Assembly Object, Instance 52, 150 or 151 (150 for<br/>product codes &lt;= 0x100 only, 151 for product codes &gt; 0x100 only).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Input Only Connection         | This connection is used to read data from the module without controlling the outputs. This connection is not dependent on any other connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                               | It is recommended that the originator sets the data size in the O->T direction of the Forward_Open to zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                               | <b>IMPORTANT</b> If an exclusive owner connection is opened against the module and times out, the input only connection times out as well. If the exclusive owner connection is properly closed, the input only connection is not be affected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                               | <ul> <li>Number of supported input only connections equals two (shared with exclusive owner and listen-only connection).</li> <li>Connection point 0 -&gt; T must be Assembly Object, Instance 191 (Input only heartbeat).</li> <li>Connection point T -&gt; 0 must be Assembly Object, Instance 52, 150, or 151 (150 for product codes &lt;= 0x100 only, 151 for product codes &gt; 0x100 only).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

#### **Listen-only Connection**

## **Class 3 Connections**

Class 3 connections are used to establish connections to the message router. The connection is used for Explicit Messaging. Class 3 connections use TCP connections.

Connection point T -> 0 must be Assembly Object, Instance 52, 150 or 151 (150 for

This connection is dependent on another connection to exist. If that connection(exclusive

Number of supported listen-only connections equals two (shared with exclusive owner

Connection point 0 -> T must be Assembly Object, Instance 192 (listen-only heartbeat)

owner or input only) is closed, the listen-only connection must be closed as well.

It is recommended that the originator sets the data size in the Forward\_Open to zero.

- Three concurrent encapsulation sessions are supported
- Six concurrent Class 3 connections are supported
- Multiple Class 3 connections per encapsulation session are supported

product codes <= 0x100 only, 151 for product codes > 0x100 only)

• Supported API: 100...10000 ms

and listen-only connection).

•

•

•

- T->0 Connection type: Point-to-point
- 0->T Connection type: Point-to-point
- Supported trigger type: Application

### Discrete Input Point Object Class Code 0x0008

The following class attributes are currently supported for the Discrete Input Point Object:

| Attribute ID | Access Rule | Name         | Data Type | Value |
|--------------|-------------|--------------|-----------|-------|
| 1            | Get         | Revision     | 0xC7      | 2     |
| 2            | Get         | Max Instance | UINT      | 4     |

Two instances of the Discrete Input Point Object are supported. All instances contain the following attributes.

| Attribute ID | Access Rule | Name        | Data Type | Value                                                                                     |
|--------------|-------------|-------------|-----------|-------------------------------------------------------------------------------------------|
| 3            | Get         | Value       | BOOL      | 0 = 0FF, 1 = 0N                                                                           |
| 5            |             | FilterOffOn | 0xC7      | 0 = No delay<br>1000 = 1 ms<br>2000 = 2 ms<br>4000 = 4 ms<br>8000 = 8 ms<br>16000 = 16 ms |
| 6            |             | FilterOnOff | 0xC7      | 0 = No delay<br>1000 = 1 ms<br>2000 = 2 ms<br>4000 = 4 ms<br>8000 = 8 ms<br>16000 = 16 ms |

The following common services are implemented for the Discrete Input Point Object.

| Service Code | Implemented for | or:      | Service Name         |  |
|--------------|-----------------|----------|----------------------|--|
| Selvice coue | Class           | Instance |                      |  |
| 0x0E         | Yes             | Yes      | Get_Attribute_Single |  |
| 0x10         | No              | Yes      | Set_Attribute_Single |  |

To obtain the status of an input point (ON or OFF), configure a CIP message as shown in Figure 34

#### Figure 34 - Obtain Status of Input

| <u>×</u>                   |
|----------------------------|
|                            |
| <b>V</b>                   |
| Source Element:            |
| Source Length: 0 🐳 (Bytes) |
| Destination CIP_Data       |
| New Tag                    |
|                            |
|                            |
|                            |
| One Done Length: 1         |
| Timed Out 🗲                |
|                            |
|                            |
| Cancel Apply Help          |
|                            |

Instance 1 is the first input (Pt00), if the RFID interface supports two inputs, then Pt01 would be instance 2.

The return value in CIP\_Data[0] is either 0 (Input OFF) or 1 (Input ON).

To obtain the Input Filter Off/On value of an input point, configure a CIP message as shown in <u>Figure 35</u>:

Figure 35 - Obtain Input Filter Off/On Value

| 1essage Config                                 | juration - CIP    | •               |       |                                  |                | ×        |  |  |  |  |  |
|------------------------------------------------|-------------------|-----------------|-------|----------------------------------|----------------|----------|--|--|--|--|--|
| Configuration <sup>*</sup> Communication   Tag |                   |                 |       |                                  |                |          |  |  |  |  |  |
| Message Typ                                    | e: CIP (          | Generic         |       | -                                | I              |          |  |  |  |  |  |
| Service Ge<br>Type:                            | t Attribute Singl | e               | -     | Source Element<br>Source Length: |                | (Bytes)  |  |  |  |  |  |
| Service e<br>Code:                             | (Hex) Cla         | ass: 8          | (Hex) | Destination                      | CIP_Data       | <b>_</b> |  |  |  |  |  |
| Instance: 1                                    | At                | tribute: 5      | (Hex) |                                  | New Tag        |          |  |  |  |  |  |
|                                                |                   |                 |       |                                  |                |          |  |  |  |  |  |
| 🥥 Enable 📿                                     | ) Enable Waiti    | ng 🔾 Sta        | rt    | Done                             | Done Length: 2 |          |  |  |  |  |  |
| ⊖ Error Code:<br>Error Path:<br>Error Text:    | E)                | ktended Error C | iode: |                                  | 🔲 Timed Out 🗲  |          |  |  |  |  |  |
|                                                |                   | 0               | эк 🛛  | Cancel                           | Apply          | Help     |  |  |  |  |  |

Instance 1 is the first input (Pt00), if the RFID interface supports two inputs, then Pt01 would be instance 2.

The return value contains the filter time in milliseconds.

# **Discrete Output Point Object** The following class attributes are supported: Class Code 0x0009

| Attribute ID | Access Rule | Name         | Data Type | Value   |
|--------------|-------------|--------------|-----------|---------|
| 1            | Get         | Revision     | OxC1      | 1       |
| 2            | Get         | Max Instance | UINT      | 4 or 10 |

Two instances of the Discrete Output Point Object are supported. All instances contain the following attributes.

| Attribute ID | Access Rule | Name       | Data Type | Value                                        |
|--------------|-------------|------------|-----------|----------------------------------------------|
| 3            | Get         | Value      | BOOL      | 0 = 0FF, 1 = 0N                              |
| 5            | Get/Set     | FaultMode  | BOOL      | 0 = Use Fault Value<br>1 = Hold Last State   |
| 6            | Get/Set     | FaultValue | BOOL      | 0 = 0FF<br>0 = 0N                            |
| 7            | Get/Set     | ProgMode   | BOOL      | 0 = Use Program Value<br>1 = Hold Last State |
| 8            | Get/Set     | ProgValue  | BOOL      | 0 = 0FF<br>1 = 0N                            |

The following common services are implemented for the Discrete Output Point Object.

| Service Code | Implemented for: |          | Service Name         |
|--------------|------------------|----------|----------------------|
| Seivice coue | Class            | Instance | Service Name         |
| 0x0E         | Yes              | Yes      | Get_Attribute_Single |
| 0x10         | No               | Yes      | Set_Attribute_Single |

To obtain the state of an output point, configure a CIP message as shown in Figure 36:

#### Figure 36 - Obtain State of Output

| Message Configuration - CIP                              | x                                                                       |
|----------------------------------------------------------|-------------------------------------------------------------------------|
| Configuration* Communication Tag                         |                                                                         |
| Message Type: CIP Generic                                |                                                                         |
| Service Get Attribute Single                             | Source Element:<br>Source Length:<br>Destination<br>CIP_Data<br>New Tag |
|                                                          | Done Done Length: 1                                                     |
| Error Code: Extended Error Code: Error Path: Error Text: | Timed Out 🗲                                                             |
| ОК                                                       | Cancel Apply Help                                                       |

The return value contains the state of the output (0=0ff, 1=0n)

To set the state of an output point, configure a CIP message as shown in Figure 37 on page 146:

#### Figure 37 - Set State of Output

| Message Configuration - CIP<br>Configuration Communication Tag | ×                                                                                |
|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Message Type: CIP Generic                                      |                                                                                  |
| Service Set Attribute Single                                   | Source Element: CIP_Data_Source   Source Length: 1   Bytes  Destination  New Tag |
| ○ Enable ○ Enable Waiting ○ Start                              | Done Done Length: 0                                                              |
| Error Code: Extended Error Code: Error Path: Error Text:       | ☐ Timed Out ←                                                                    |
| OK                                                             | Cancel Apply Help                                                                |

CIP\_Data\_Source is a SINT that contains the value to set the output too (0=0ff, 1=0n).

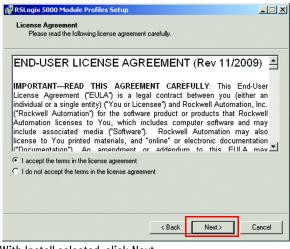
# **Install the Add-on Profile**

## Introduction

This appendix goes through the Add-on Profile (AOP) of the RFID transceivers with the RSLogix 5000<sup>®</sup> program. AOPs are files that you add to your Rockwell Automation<sup>®</sup> library. These files contain the pertinent information for configuring a device that is added to the Rockwell Automation network.

The AOP simplifies the setup of devices. The AOP presents the necessary fields in an organized fashion, which allows you to create and configure your system in a quick and efficient manner.

The AOP is a folder that contains numerous files for the device. It comes as an installation package. Follow the on-screen instructions to install the AOP.


- 1. In the File Explorer, locate the directory where the installation files were extracted.
- 2. Click MPSetup.exe

| Name 🔺           | Size     | Туре                  | Date Modified      |
|------------------|----------|-----------------------|--------------------|
| 🛅 InstallNotes   |          | File Folder           | 7/26/2011 11:36 AM |
| License          |          | File Folder           | 7/26/2011 11:36 AM |
| D MP             |          | File Folder           | 7/26/2011 11:36 AM |
| 🤒 autorun.inf    | 1 KB     | Setup Information     | 8/9/2010 8:11 AM   |
| MPSetup.exe -    | 1,003 KB | Application           | 9/9/2010 4:32 PM   |
| MPSetupCHS.dll   | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupDEU.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupENU.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupESP.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupFRA.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupITA.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 MPSetupJPN.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| MPSetupKOR.dll   | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 💁 MPSetupPTB.dll | 141 KB   | Application Extension | 9/9/2010 4:32 PM   |
| 👏 shfolder.dll   | 22 KB    | Application Extension | 8/9/2010 8:09 AM   |

3. The window identifies the module profiles and the firmware revision. Click Next.

| 🙀 RSLogix 5000 Module Profiles Setup                                                                                            | _ 🗆 🗡  |
|---------------------------------------------------------------------------------------------------------------------------------|--------|
| Welcome to the RSLogix 5000 Module Profiles Setup<br>Wizard.                                                                    |        |
| The RSLogix 5000 Module Profiles Setup Wizard provides for the<br>installation of these groups of RSLogix 5000 Module Profiles. |        |
| Rockwell Automation 56RF-IN-IPD22 Module Profiles<br>1.00.4                                                                     |        |
| Details                                                                                                                         |        |
| < Back Next > C                                                                                                                 | Cancel |

4. Accept the terms of the license agreement and click Next.



5. With Install selected, click Next.

| Program 1                   | RSLogix S000 Module Profiles Setup Program Maintenance Instalio remove RSLogix S000 Module Profiles. |        |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--------|--|--|
| <ul> <li>Install</li> </ul> |                                                                                                      |        |  |  |
| C Uninst                    | ,<br>tall<br>Uninstall RSLogix 5000 Module Profiles.                                                 |        |  |  |
| 09                          |                                                                                                      |        |  |  |
|                             |                                                                                                      |        |  |  |
|                             |                                                                                                      |        |  |  |
|                             | < Back Next>                                                                                         | Cancel |  |  |

6. The profile name appears in the left-hand box and its details appear in the right-hand box. Verify that the module name is correct.

Click Install.

| 🖁 RSLogix 5000 Module Profiles Setup                                                |                                                                                                                                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ready to Configure RSLogix 5000 Modu<br>The wizard is ready to configure RSLogix 50 |                                                                                                                                                              |
| Click Install to begin the installation.                                            |                                                                                                                                                              |
| If you want to review or change any of your setting                                 | s, click Back. Click Cancel to exit the wizard.                                                                                                              |
| Install these RSLogix 5000 Module Profiles                                          | Details:<br>Group<br>Rockwell Automation 56RF-IN-IPD22<br>Available Software Version:<br>1.00.4<br>Installation Status:<br>Software Version 1.00.0 Installed |
|                                                                                     | < Back Install Cancel                                                                                                                                        |

# Troubleshooting

# **Common Solutions**

Table 47 lists common problems and solutions for the RFID system.

#### Table 47 - Problems/Solutions

| Problem                                                                                                                                                                                                                         | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l just hooked this unit up<br>out-of-the-box and cannot see<br>the RFID interface in the RSLinx<br>software.                                                                                                                    | The RFID interface is shipped with DHCP/BootP enabled and does have an assigned EtherNet/IP™ address unless the MAC address of the RFID is in the relationship list. There are three rotary switches on the RFID interface (all set to 0 by default), adjust the switches to a valid IP address in the range of 192.168.1.xxx where xxx is the position of the three rotary switches. Once the switches are in place, cycle power to the RFID interface.                                                                                                                                                                                     |
| l am getting a yellow triangle in<br>the RSLogix 5000 software for my<br>RFID interface.                                                                                                                                        | Open the properties of the RFID interface in the RSLogix 5000° software and<br>verify:<br>The Inhibit Module box in the connection tab is not checked.<br>The IP address in the General Tab is the same as the IP address configured in<br>the RFID interface.<br>The IP address of the RFID interface is on the same subnet as the Ethernet<br>module in the Logix rack.<br>Also, verify that the RFID interface has power by checking that the Aux Power<br>status indicator is steady green, the MOD status indicator is steady green, the<br>Link 1 status indicator is flashing green, and the NET status indicator is steady<br>green. |
| My RFID channel[x] status<br>indicator is flashing red on the<br>interface.                                                                                                                                                     | Flashing red indicates no communications between the interface and the transceiver. Check cables between the RFID interface and transceiver. Verify that the power status indicator on the transceiver is green.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| When I put a tag in the RFID field<br>the status indicator on my<br>transceiver and interface turns<br>amber.                                                                                                                   | When one or more RFID tags are detected in the field, the status indicators on the interface and transceiver turn amber, which indicates tag presence. When no tags are detected, the status indicators turn green indicating that no tags are detected but communications are healthy.                                                                                                                                                                                                                                                                                                                                                      |
| When I put a tag in the RFID field<br>the power status indicator on the<br>transceiver is steady green, the<br>R/W Status status indicator is<br>steady green, and the status<br>indicator for that channel is<br>steady green. | Verify that the RFID tag is an ICODE compatible or SL2 style tag. The RFID interface is not to detect proprietary tag types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Notes:

#### Numerics

5069-SERIAL configuration 69 888 IP address 39

### A

accessory product selection 25 Add-On instruction 63 ADDR setting restriction 71 address MAC 47 advanced IP address 34 AFI definition 9 lock 85 write 98 **AOI** 63 definition 9 input tag 64 installation 70 interface tag 67 output tag 66 sample code precondition 72 specification 64 AOP definition 9 assembly object Class Code 0x0004 133 auxiliary power connection 27

#### B

backward compatibility 13 block interface 15 lock 86 block read multi-tag 91 block write multi-tag 105 bytes clear multiple 75

#### C

cable overview 27 change IP address 37 CIP explicit connection behavior 131 CIP object 131 Class 1 connection 142 Class 3 connection 143 Class Code 0x0001 identity object 131 Class Code 0x0004 assembly object 133 **Class Code 0x0008** discrete input point object 143 Class Code 0x0009 discrete output point object 145 clear multiple bytes 75 code product 131 command read byte 89 routine 73 write byte 99 command objective 120, 122 command structure 121, 123 commands RFID 61 compatibility backward 13 configuration 127 5069-SERIAL 69 image table and tag 54 network 127 connection Class 1 142 Class 3 143 digital input 29 digital output 29 EtherNet/IP 30 exclusive owner 142 1/0 126 input only 142 listen-only 143 transceiver 29 connection tab 48 continuous read mode 120 teach 122 continuous read mode 109

# D

daisy chain power connection 28 default password 127 username 127 definition module 48 device service 128 device identity 127 device level ring topology 32 DFSID definition 9 DHCP definition 9

diagnostics 125 digital input connection 29 digital output connection 29 discrete input point object Class Code 0x0008 143 discrete output point object Class Code 0x0009 145 **DLR** 32 DNS definition 9 DOS definition 9 DSFID lock 88 write 101

#### Ε

EAS definition 9 environment setup 69 error code 129 Ethernet statistics 126 EtherNet/IP 24 connection 30 interface block product selection 24 exclusive owner connection 142 explicit connection behavior CIP 131

#### F

fastening 41 FE definition 9 ferroelectric random access memory 23 field map transceiver 42 FRAM 23 definition 9 fundamental IP address 33

#### G

general tab 47 get multiple block security status 77 system information 79 version information 81

#### H

high-frequency tag 64 transceiver 63 home 125

#### I

1/0 connection 126 identity device 127 identity object Class Code 0x0001 131 IEC definition 9 image table configuration 54 input 55 output 57 indicator status 16, 17 initial state R/W status indicator 72 input image table and tag 55 input channel tag 56 input image layout 118 input image table read with MicroLogix 1400 134 read with SLC-5/05 140 input only connection 142 input tag AOI 64 installation AOI 70 INT definition 9 interface block 15, 24 interface tag AOI 67 internet protocol tab 50 inventory 82 **IP address** 888 39 advanced 34 change 37 fundamental 33 ISO definition 9 J JTC definition 9

#### L

layout input image 118 output image 118 lean (SLI-L) 22 Linear topology 31 listen-only connection 143 lock AFI 85 block 86 DSFID 88

#### M

MAC address 47 definition 9 MACID definition 9 main components product selection 24 main routine 73 memory structure tag 18 metal surface spacing next to 42 mode continuous read 109, 120 overview 121 mode of operation 121 module definition 48 module info tab 49 modules supported (AOI) 63 multiple block read 93 multiple block security status qet 77 multiple blocks read 117 write 102, 118 multiple bytes clear 75 multi-tag block write 105 multi-tag block read 91

#### N

name string 131 network configuration 127 network address set 33 network setting 126

#### 0

object CIP 131 operation 120, 122 mode 121 option power connection 28 output image table and tag 57 output channel tag 58 output image lavout 118 output image table write with MicroLogix 1400 138 output tag AOI 66

#### overview

cable 27 mode 121

#### Ρ

password default 127 port configuration tab 50 power connection auxiliary 27 daisy chain 28 option 28 power up transceiver 18 product code 131 product selection 24

#### Q

**QD** definition 9

# R

read input image table with MicroLogix 1400 134 with SLC-5/05 140 multiple block 93 multiple blocks 117 single block 95 transceiver setting 97 read byte 115 command 89 routine 111 resource 10 restriction ADDR setting 71 RFID defined 11 definition 9 tag 18 **RFID commands** 61 routine command 73 main 73 read byte 111 S

sample code precondition AOI 72 SB definition 9 secure (SLI-S) 21 security status get multiple block 77 service device 128 set network address 33 setting network 126

setting restriction ADDR 71 setup environment 69 system 13 single block read 95 write 107 SINT definition 9 **SLI** 20 **SLI-L** 22 **SLI-S** 21 smart label IC 21, 22 spacing next to metal surface 42 transceiver 41 specification AOI 64 Star topology 31 statistics Ethernet 126 status indicator initial state 72 interface block 16 transceiver 17 structure command 121, 123 support command 68 supported modules AOI 63 system more than 4 A 28 setup 13 system information get 79

Т

tab connection 48 general 47 internet protocol 50 module info 49 port configuration 50 tag configuration 54 high-frequency 64 input 55 input channel 56 memory structure 18 output 57 output channel 58 product selection 25 RFID 18 **Taiwan NCC warning statement** 12 teach continuous read 122 topology device level ring 32 Linear 31 Star 31

#### transceiver 17

connection 29 field map 42 high-frequency 63 power up sequence 18 product selection 24 read setting 97 spacing 41 status indicator 17

#### U

UID definition 9 username default 127 UUID definition 9

#### V

version information get 81

#### W

warning statement Taiwan NCC 12 write AFI 98 DSFID 101 multiple blocks 102, 118 output image table with MicroLogix 1400 138 single block 107 write byte 117 command 99

# Notes:

# **Rockwell Automation Support**

Use these resources to access support information.

| Technical Support Center         Find help with how-to videos, FAQs, chat, user forums, Knowledgebase, and product notification updates. |                                                                                                    | <u>rok.auto/support</u>    |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|
| Local Technical Support Phone Numbers                                                                                                    | Locate the telephone number for your country.                                                      | rok.auto/phonesupport      |
| Technical Documentation Center         Quickly access and download technical specifications, installation instructions, and use manuals. |                                                                                                    | rok.auto/techdocs          |
| Literature Library                                                                                                                       | Find installation instructions, manuals, brochures, and technical data publications.               | <u>rok.auto/literature</u> |
| Product Compatibility and Download Center<br>(PCDC)                                                                                      | Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes. | rok.auto/pcdc              |

## **Documentation Feedback**

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at <u>rok.auto/docfeedback</u>.

# Waste Electrical and Electronic Equipment (WEEE)



At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental compliance information on its website at rok.auto/pec.

Allen-Bradley, CompactLogix, ControlLogix, expanding human possibility, Logix 5000, MicroLogix, Rockwell Automation, Rockwell Software, RSLinx, RSLogix, RSLogix 5000, SLC, Studio 5000, and Studio 5000 Logix Designer are trademarks of Rockwell Automation, Inc.

 $\ensuremath{\mathsf{CIP}}$  and  $\ensuremath{\mathsf{EtherNet/IP}}$  are trademarks of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752, İçerenköy, İstanbul, Tel: +90 (216) 5698400 EEE Yönetmeliğine Uygundur

Connect with us. 👍 🞯 in 😏

#### rockwellautomation.com -

expanding human possibility<sup>®</sup>

AMERICAS: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 EUROPE/MIDDLE EAST/AFRICA: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 ASIA PACIFIC: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846 UNITED KINGDOM: Rockwell Automation Ltd. Pitfield, Kiln Farm Milton Keynes, MK11 3DR, United Kingdom, Tel: (44)(1908) 838-800, Fax: (44)(1908) 261-917

Publication 56RF-UM001E-EN-P - October 2022

Supersedes Publication 56RF-UM001D-EN-P - November 2021