

Low Voltage Network Quality Index

21 - Low Voltage Network Quality

General information	
Description & capacitor construction	
Options for correcting power factor	
Sizing capacitors at the motor load	
Sizing capacitors at the motor load using charts	

Individual units......21.7 - 21.20

Sele	ection	
	3 phase, 480V	
	3 phase, 600V	
	Catalog number explanation	
	Description	
	Fuse and blown fuse indication, 3 phase, 240V	
	Fuse and blown fuse indication, 3 phase, 480V	
	Fuse and blown fuse indication, 3 phase, 600V	
	General information	
	3 phase, 240V	
	Pump jack, 240V & 480V	
	Type CLMD-13, 208, 240, 480 & 600 V	
	Type CLMD-13SC, Stud connected, 208, 240, 480 & 600V	
Dim	ensions	
	Individual capacitors	21.18, 21.19, 21.20

Fixed banks......21.21 - 21.26

Selection	
3 phase, 240 & 480V w/3 fuses & blown fuse indication	21.23
3 phase, 600V w/3 fuses & blown fuse indication	21.24
3 phase, internally protected elements, 240 & 480V	21.21
3 phase, internally protected elements, 600V	21.22
Dimensions	
Fixed bank, wall mounted	21.26
Fixed capacitor bank, floor mounted	21.25

AutoBank 300 & 121021.27 - 21.34 Selection

Selection	
AutoBank 1200, 480 & 600V	
AutoBank 300	
Catalog number explanation	
Description & technical data	
Factory modifications	
Description	
Dimensions	
AutoBank 300	
Current transformer	

Dvnacomp	
Selection	
Catalog numbering explanation	
Description	
General information	
Typical applications	21.35

Power Active Filter, Type PQF21.37 - 21.40 Selection

cuon	
Advantages of the PQF	
Description	
Harmonics and power quality	
PQF ratings and capabilities	
PQF sizing information	
Power quality filter	
The ABB Solution: PQF	
The PQF-Manager	
Typical application	
•• ••	

Application and installation	21.45, 21.46, 21.	.47
Avoiding resonance		.49
Basic concepts		.42
Capacitor installation locations		.44
Capacitor rating		.43
Contactor kvar ratings		.45
Discharging time		.45
Extract from NEC, Separate overcurrent protection		.57
General information		.43
Harmonic analysis		.49
Harmonic content		.48
Harmonic overloading of capacitors		.48
Harmonic phenomena	21.48, 21.49, 21.	.50
How capacitors solve low power factor	21.	.43
Load alteration		.49
Origins of harmonic distortion		.48
Overcoming resonance		.49
Problems created by harmonics		.48
Recommended ratings of cables & protective devices	21.55, 21.	56
Reduction of harmonic distortion		.49
Sizing capacitors at the motor load - using charts		.53
Sizing capacitors at the motor load - using formulas		.51
Sizing capacitors at the motor load using charts		.54
Sizing capacitors for improving system power factor	21.	53
Special applications		.45
Types of filters		.49
Typical capacitor specifications		.45
Why improve low power factor?		.42
Wiring diagrams	21.46, 21.	.47

21.B 1SXU000023C0202 Low Voltage Products & Systems

Low Voltage Network Quality Power factor correction Harmonic filtering Dynamic flicker compensation

General information

Description & capacitor construction

Principal Components of a 3-Phase Capacitor

The principal components of a 3-phase ABB capacitor include:

1. Sequential Protection System:

• Self-Healing Capacitor Elements

One or more self-healing capacitor elements are installed for each phase. These elements are connected in Y or Δ . In case of dielectric breakdown, the fault is cleared by evaporation of the metalized layer around the breakdown with negligible loss of capacitance and continued operation of the capacitor!

Internally Protected Elements

A unique Sequential Protection System including the IPE design (IPE - internally protected elements) ensures that each individual element can be disconnected from the circuit at the end of the element's life.

• Nonflammable Dry Vermiculite Filler

Vermiculite is a dry, granular insulating material that is solid, inert and fire proof. This material fills all open spaces in the enclosure to isolate the capacitor elements and exclude free oxygen.

2. Discharge Resistors

Discharge resistors (one for each phase) are sized to ensure safe discharge of the capacitor to less than 50 volts in one minute or less as required by the NEC.

3. Terminal Studs

Large terminal studs are located inside the enclosure at the top of the capacitor for quick and easy cable connections.

4. Enclosure

21

All ABB enclosures are made of welded heavy gauge steel. Available enclosure types include Indoor NEMA 1, Outdoor Raintight, and Indoor Dusttight. (RAL 7032, Beige)

What is a Metallized-Film Element?

Metallized-film is a microscopically thin layer of conducting material (called an electrode), usually aluminum or zinc on an underlying layer of insulating film. The electrode thickness averages only .01 microns while insulating (polypropylene) film ranges from 5 to 10 microns in thickness depending upon the design voltage of the capacitor (the higher the voltage rating, the thicker the insulating film).

Advantages of Metallized-Film Elements

There are two electrode layers separated by one layer of insulating film. Thousands of these layers are tightly wound around a core in such a manner that the edge of one electrode is exposed on one side of the element and the edge of the other electrode is exposed on the other side of the element. See Fig. 1 & 2.

Wires are then connected to each side of the element. The element is enclosed in a container and then filled with a hardening protective sealant.

1. Self-Healing Design

21.2

General information Description & capacitor construction

Self-healing refers to a process where a short circuit between electrodes vaporizes the electrode around the fault (see Fig. 14) until the fault is eliminated. The element continues to function with negligible loss of performance (see Fig. 15).

2. Low Internal Losses

Due to the high dielectric efficiency of the metallized-film, the internal losses are extremely low. ABB metallized-film design losses are limited to .5 watts per kvar including the losses across the discharge resistors.

3. Small Element Size

Due to the thin electrode and dielectric, metallized-film elements are small and compact in size resulting in smaller, more powerful capacitors.

The capacitance of any element design is inversely proportional to the separation between electrodes. In other words, if the separation between conducting surfaces is cut in half, the effective capacitance is doubled in addition to reducing the physical size of the element by half.

More About Self Healing Elements

"Self-healing" is a characteristic which is unique to metallized electrode capacitors. All capacitors normally experience insulation breakdown as a result of the accumulated effect of temperature, voltage stress, impurities in the insulating medium, etc. When this happens in a non-"metallized" design,

Fig. 3. Two electrodes short circuit through a fault in a dielectric layer.

the electrodes are short-circuited and the capacitor ceases its production of reactive power. In an ABB metallized-film unit, however, these individual insulation breakdowns do not mean the shutdown of the capacitor. The faults self-heal themselves and the capacitor continues operation.

The conducting electrode is very thin; when a short circuit develops as a result of a fault in the insulating dielectric, the thin electrode vaporizes around the area of the fault. This vaporization continues until sufficient separation exists between the faulted electrodes to overcome the voltage level. Fig. 15 illustrates the process of self-healing.

Fig. 4 illustrates "self-healing". The electrode layers in the area where they were short circuiting have been vaporized, thereby eliminating the short circuit.

The entire process of self-healing takes "microseconds" and the amount of electrode which is lost is negligible in comparison to the total surface area of the element. The result is the metallized-film unit may self-heal hundreds of times during its long life and still retain virtually all of its rated capacitance.

The IPE Sequential Protection System

ABB 's metallized-film self healing capacitor elements will have a longer life than their conventional foil design counterparts for the above reason. However, accumulated effects of time, temperature, voltage stress, etc., eventually effect capacitor life.

ABB's sequential protection system featuring patented Internally Protected Elements (IPE) design provides increased protection to facilities and personnel not available from other capacitor designs. This proven design allows for self-healing throughout the life of the capacitor to insure the maximum length of reliable service and still provide short circuit protection in each element when self-healing can no longer continue. This is accomplished by a combination of unique winding construction and an internal fuse link (See Fig. 5) within each element which

safely and selectively disconnects each individual element. ABB capacitors do not rely on mechanical pressure interrupters and additional line fuses have disadvantages associated with that kind of construction.

What are Discharge Resistors?

As all the capacitor elements store electrical power like a battery, the capacitor will maintain a near full charge even when not energized. As this is a potentially dangerous condition to unsuspecting plant personnel that might be inspecting the capacitor terminals and wiring, discharge resistors are connected between all of the terminals. When the capacitor is shut off, these discharge resistors drain the capacitor elements of their stored electrical charge. It is recommended, however, that capacitor terminals should ALWAYS be short-circuited before touching the terminals.

What is the Significance of Dry Type Design?

ABB low voltage capacitors contain no free liquids and are filled with a unique nonflammable granular material called vermiculite. Environmental and personnel concerns associated with leakage or flammability of conventional oil-filled units are eliminated; and kvar for kvar, vermiculite filled units weigh 30% to 60% less than their oil filled counterparts.

Vermiculite is routinely used in the United States as an insulating material in the walls and ceilings of new buildings. Its properties have been extensively documented and recognized as an ideal material for safety and environmental considerations.

General information Options for correcting power factor

Options for Correcting Power Factor

There are three primary methods of correcting power factor:

• Individual Capacitor Units - One capacitor unit for each inductive load.

• <u>Banks of Capacitor Units</u> - Large Capacitor System connected to the line at some central point in the distribution system.

• <u>Combination of Above</u> - Where individual capacitors are installed on the larger inductive loads and banks are installed on main feeders or switchboards, etc.

Individual Capacitor Units

Power factor correction is best achieved with individual capacitor units located directly at the inductive load (in most cases a motor). This has many of the advantages of capacitor bank installations including some advantages capacitor bank installations cannot offer.

Advantages of individual capacitor units:

• Increased Distribution System Capacity - Only individual capacitor units can improve power consumption efficiency throughout the entire distribution system all the way to the load! Therefore, where wiring is being overloaded by induction motors, increased system capacity can be obtained by reducing the load and adding individual power factor correction units.

• <u>Stabilized Voltage Levels</u> - Voltage drops to individual inductive load are reduced thereby decreasing heat damage caused by excessive currents.

• Lower Losses - When individual capacitor units are installed directly at the terminals of an inductive load such as a motor or transformer, the line losses are reduced.

• <u>Capacitor & Load Can Be Switched ON/OFF Together</u> This ensures that the motor cannot operate without the capacitor; and also ensures that the capacitor only operates when needed.

Fixed and Automatic Capacitor Banks

Group installation of capacitors is achieved in two ways:

• Fixed Capacitor Banks - Individual capacitors racked in a common enclosure with no switching or stepping capability.

• <u>Automatic Capacitor Banks</u> - Individual capacitors racked in a common enclosure with switching capability. The capacitors are turned on and off by a micro-processor based controller. The controller also provides network data and alarm conditions to the user. Network data consists of power factor, volts, amps and harmonic distortion.

Advantages of fixed or automatic bank systems

 More Economical - Capacitor banks are more economical than individual capacitor units when the main reason for power factor correction is to reduce utility power bills and/or reduce the current in primary feeders from a main generator or transformer. Large banks or racks of capacitors are installed at the main switchboard or at the substation thereby increasing power factor and obtaining the advantages of lower power consumption.

• Lower Installation Costs - The cost of installing one fixed or automatic capacitor bank unit will be less than installing a number of individual capacitors at inductive loads.

 <u>Switching</u> - Automatic capacitor banks can switch all or part of the capacitance automatically depending on load requirements. This way, only as much power factor correction as needed for the given load is provided. (This switching capability is a primary advantage over fixed capacitor banks where over-capacitance, leading power factor and resulting overvoltages can occur should the load decrease.)

 <u>Monitoring</u> - Automatic capacitor bank controllers provide network data and alarm conditions to the user. Network data consists of power factor, volts, amps and harmonic distortions.

General information Sizing capacitors at the motor load

Sizing Capacitors at the Motor Load

When the determination is made that power factor correction capacitors ARE a good investment for a particular electrical system, you need to know:

- How many capacitors are needed?
- What sizes are appropriate?

The capacitor provides a local source of reactive current. With respect to inductive motor load, this reactive power is the magnetizing or "no-load current" which the motor requires to operate.

A capacitor is properly sized when its full load current rating is 90% of the no-load current of the motor. This 90% rating avoids overcorrection and the accompanying problems such as overvoltages.

One Selection Method:Using Formulas

If no-load current is known . . .

The most accurate method of selecting a capacitor is to take the no-load current of the motor, and multiply by .90 (90%). Take this resulting figure, turn to the appropriate catalog page, and determine which kvar size is needed, catalog number, enclosure type, and price.

EXAMPLE: Size a capacitor for a 100hp, 460V 3-phase motor which has a full load current of 124 amps and a no-load current of 37 amps.

1. Multiply the no-load current figure of 37 amps by 90%.

37 no load amps X 90% = 33 no load amps

2. Turning to the catalog page for 480 volt, 3-phase capacitors, find the closest amp rating to, but NOT OVER 33 amps. See Table 1, sample catalog pricing chart. Per the sample chart the closest amperage is 32.5 amps. The proper capacitor unit, then is 27 kvar and the appropriate catalog number depends on the type enclosure desired.

NOTE: The formula method corrects power factor to approximately .95

TABLE 1 480 VOLT, 60 Hz., 3-Phase

If the no load current is not known . . .

If the no-load current is unknown, a reasonable estimate for 3-phase motors is to take the full load amps and multiply by 30%. Then take that figure and multiply times the 90% rating figure being used to avoid overcorrection and overvoltages. EXAMPLE: Size a capacitor for a 75hp, 460V 3-phase motor which has a full load current of 92 amps and an unknown no-load current.

First, find the no-load current by multiplying the full load current times 30%.
 92 (full load amps) X 30% = 28 estimated no-load amps

2. Multiply 28 no-load amps by 90%.

28 no-load amps X 90% = 25 no-load amps 3. Now examine the capacitor pricing and selection chart for 480 volt, 3-phase capacitors. Refer again to Table 1. Here it will be seen that the closest capacitor to 25 amps full load current without going over is a 20 kvar unit, rated at 24.1 amps. 4. The correct selection, then, is 20 kvar!

General information Sizing capacitors at the motor load Using charts

An Alternate Selection Method - Using Charts

TABLE 2: Suggested Maximum Capacitor Ratings for T-Frame NEMA Class B Motors

	NOMINAL MOTOR SPEED											
Induction	3600 R	/MIN	1800	R/MIN	1200	R/MIN	900 F	R/MIN	720 R/	'MIN	600 F	R/MIN
motor rating (HP)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reductions (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)
3 5 7.5 10 15	1.5 2 2.5 4 5	14 14 14 14 14 12	1.5 2.5 3 4 5	23 22 20 18 18	2.5 3 4 5 6	28 26 21 21 20	3 4 5 6 7.5	38 31 28 27 24	3 4 5 7.5 8	40 40 38 36 32	4 5 6 8 10	40 40 45 38 34
20 25 30 40 50	6 7.5 8 12 15	12 12 11 12 12 12	6 7.5 8 13 18	17 17 16 15 15	7.5 8 10 16 20	19 19 19 19 19 19	9 10 14 18 22.5	23 23 22 21 21	12 12 15 22.5 24	25 25 24 24 24 24	18 18 22.5 25 30	30 30 30 30 30 30
60 75 100 125 150	18 20 22.5 25 30	12 12 11 10 10	21 23 30 36 42	14 14 14 12 12	22.5 25 30 35 40	17 15 12 12 12 12	26 28 35 42 52.5	20 17 16 14 14	30 33 40 45 52.5	22 14 15 15 14	35 40 45 50 60	28 19 17 17 17
200 250 300 350 400	35 40 45 50 75	10 11 11 12 10	50 60 68 75 80	11 10 10 8 8	50 62.5 75 90 100	10 10 12 12 12 12	65 82 100 120 130	13 13 14 13 13	68 87.5 100 120 140	13 13 13 13 13 13	90 100 120 135 150	17 17 17 15 15
450 500	80 100	8 8	90 120	8 9	120 150	10 12	140 160	12 12	160 180	14 13	160 180	15 15

Applies to three-phase, 60Hz motors when switched with capacitors as a single unit.

Another method of selecting the proper capacitor employs the use of only a selection chart shown in Table 2 or 3. These tables take other variables such as motor RPM into consideration in making recommendations for capacitor applications. They are convenient because they only require that the user know the horsepower and RPM of the motor. Both tables estimate the percentage reduction in full load current drawn by the motor as a result of the capacitor's installation.

WARNING!

Never oversize capacitors or exceed 1.0 power factor or resulting problems with the motor can occur!!

If calculations or a kvar determination chart indicate a kvar rating not found in a pricing and selection chart, always refer to the next lower kvar rating!

EXAMPLE: A manufacturer needs to determine the proper capacitors required for a 1200 RPM, 75HP T-Frame NEMA class B motor.

1. First find 75 in the horsepower column of the chart.

Locate the 1200 RPM capacitor rating (kvar) column. Note the figure of 25 kvar.
 Now refer to the appropriate pricing and selection chart Table 1, page 19.5. The appropriate kvar rating is 25 kvar. Depending on the desired enclosure, the price and catalog number can then be easily determined.

NOTE

Using the above charts for selecting capacitors will correct power factor to approximately .95.

TABLE 3: Suggested Maximum Capacitor Ratings for U-Frame NEMA Class B Motors

NEMA Motor Design A or B Normal Starting Torque Normal Running Current

H.P.	3600	RPM	1800	RPM	1200	RPM	900	RPM	720	RPM	600	RPM
Rating	kvar	%AR										
3	1.5	14	1.5	15	1.5	20	2	27	2.5	35	3.5	41
5	2	12	2	13	2	17	3	25	4	32	4.5	37
7.5	2.5	11	2.5	13	2	15	4	22	5.5	30	6	34
10	3	10	3	11	3.5	14	5	21	6.5	27	7.5	31
15	4	9	4	10	5	13	6.5	18	8	23	9.5	27
20	5	9	5	10	5	11	7.5	18	10	20	10	25
25	5	6	5	8	7.5	11	7.5	13	10	20	10	21
30	5	5	5	8	7.5	11	10	15	15	22	15	25
40	7.5	8	10	8	10	10	15	16	15	18	15	20
50	10	7	10	8	10	9	15	12	20	15	25	22
60	10	6	10	8	15	10	15	11	20	15	25	20
75	15	7	15	8	15	9	20	11	30	15	40	20
100	20	8	20	8	25	9	30	11	40	14	45	18
125	20	6	25	7	30	9	30	10	45	14	50	17
150	30	6	30	7	35	9	40	10	50	17	60	17
200	40	6	40	7	45	8	55	11	60	12	75	17
250	45	5	45	6	60	9	70	10	75	12	100	17
300	50	5	50	6	75	9	75	9	80	12	105	17

Applies to three-phase, 60Hz motors when switched with capacitors as a single unit.

Individual & fixed capacitor banks

vidual & fixed bank

Description

• **High reliability** Well proven features of ABB dry type power factor correction capacitor technology are incorporated into individual and fixed bank designs.

- Very low losses Capacitor total losses are less than 0.5 watts per kvar.
- Discharge mechanism Carbon filament or wire-wound resistors sized to automatically discharge the capacitor to less than 50 volts in under one minute.
- Tolerance on capacitance 0%, +15%
- Overcurrent tolerance 135% of rated current, continuously

- Overvoltage tolerance 110% of rated voltage, continuously
- Standard ambient temperature range -40°C to +40°C (-40°F to +104°F)
- Internal cables and insulation All internal conductors utilize stranded, tin plated copper wire. Insulation is fire-retardant, rated 105°C (220°F).
- Complete environmental acceptability ABB capacitors have a dry type dielectric with no free liquid and do not pose any risk of leakage or pollution of the environment. Therefore, employee safety training and maintenance of Material Safety Data Sheets are not required with these capacitors.
- Unique sequential protection system Patented system ensures that each individual capacitor element is selectively and reliably disconnected from the circuit at the end of its life.

continued next page

General information Catalog number explanation

Fuse protection

 ABB capacitors are provided with patented IPE (Internally Protected Elements) which is an integral and important part of the Sequential Protection System. Additional fuses are NOT required for protection of ABB capacitor elements, but external overcurrent protection may be needed for the installation in order to meet the National Electric Code requirements concerning protection of the conductors feeding the capacitors.

Long life

Low losses and the self-healing properties of ABB capacitor elements help to guarantee the long operating life of individual and fixed capacitor banks from ABB.

Safety

Vermiculite, a nonflammable and nontoxic material, safely absorbs any energy produced within the capacitor enclosure.

Approvals

- UL, CE and CSA approved
- UL File #E135667
- CSA File #LR88616
- Complies with applicable requirements of IEC, NEC[®], NEMA CP-1, ANSI and IEEE std. 18.

Factory modifications

- Mounting brackets
- Terminal connected fuses & blown fuse indication
- State indication

NOTE: National Electric Code® and NEC® are registed trademarks of the National Fire Protection Association, Inc., Quincy, MA 02269

Catalog number explanation

Factory modifications

kvar rating

Enclosure type – G=NEMA 1, R=NEMA 3R, D=NEMA 12

Enclosure size - 4=43, 5=53, 6=63, 8=83, 9=93

Voltage - 20=208V, 24=240V, 48=480V, 60=600V

Capacitor type – C=Individual, F=Fixed bank, P=Pump jack

21.8

Individual capacitors 3 phase ①

240 Volt, 60 Hz

Network Quality

ABB's standard capacitor is suitable for general power factor correction applications, for connection directly at the reactive source. Features include:

- Dry, environmentally safe construction
- Self healing capability
- Patented Internal Protected Elements
- NEMA 1, 3R, 12
- Easy electrical connection to large terminals
- Convenient grounding lug
- Mounting feet for easy installation
- Suitable for floor or wall mounting

240 Volt, 60 Hz - 3-Phase

		Rated	Approx.	Approx. Enclosure type					
Enclosure	kvar	current	shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	IA 12
size	rating	per phase	weight	Catalog	List	Catalog	List	Catalog	List
		(amps)	(lbs.)	number	price	number	price	number	price
	1	2.4	8	C244G1	\$ 268	C244R1	\$ 288	C244D1	\$ 288
	1.5	3.6	8	C244G1.5	278	C244R1.5	300	C244D1.5	300
	2	4.8	8	C244G2	288	C244R2	310	C244D2	310
	2.5	6.0	8	C244G2.5	322	C244R2.5	342	C244D2.5	342
	3	7.2	8	C244G3	336	C244R3	358	C244D3	358
	3.5	8.4	8	C244G3.5	354	C244R3.5	374	C244D3.5	374
	4	9.6	8	C244G4	386	C244R4	406	C244D4	406
	5	12.0	8	C244G5	406	C244R5	428	C244D5	428
	6	14.4	8	C244G6	450	C244R6	470	C244D6	470
40	7	16.8	8	C244G7	514	C244R7	536	C244D7	536
43	7.5	18.0	8	C244G7.5	524	C244R7.5	546	C244D7.5	546
	8	19.2	8	C244G8	536	C244R8	556	C244D8	556
	9	21.7	8	C244G9	556	C244R9	578	C244D9	578
	10	24.1	8	C244G10	578	C244R10	600	C244D10	600
	11	26.5	13	C244G11	610	C244R11	632	C244D11	632
	12	28.9	13	C244G12	664	C244R12	684	C244D12	684
	12.5	30.1	13	C244G12.5	684	C244R12.5	706	C244D12.5	706
	14	33.7	8	C244G14	706	C244R14	728	C244D14	728
	15	36.1	8	C244G15	750	C244R15	770	C244D15	770
	17	40.8	22	C244G17	814	C244R17	836	C244D17	826
	20	48.1	22	C244G20	898	C244R20	920	C244D20	920
	22.5	54.1	23	C245G22.5	942	C245B22.5	964	C245D22.5	964
50	25	60.1	23	C245G25	1.006	C245B25	1.028	C245D25	1.028
53	30	72.2	23	C245G30	1,112	C245R30	1.134	C245D30	1.134
	35	84.2	25	C245G35	1.220	C245R35	1.242	C245D35	1.242
	40	96.2	25	C245G40	1,392	C245R40	1,412	C245D40	1,412
	45	108.3	34	C246G45	1 626	C246B45	1 648	C246D45	1 648
	50	120.3	34	C246G50	1,020	C246B50	1 798	C246D50	1 798
	55	132.3	37	C246G55	2 248	C246B55	2 268	C246D55	2 268
63	60	144.3	37	C246G60	2 354	C246B60	2,376	C246D60	2,376
	70	168.4	39	C246G70	2,596	C246B70	2,618	C246D70	2,618
	80	192.6	43	C246G80	2,870	C246B80	2,892	C246D80	2,892
	00	152.0		02-0000	2,070	0240100	2,032	0240200	2,032

Capacitor state indication system

240V kvar	LEDs catalog number suffix	List price
1 – 15 17 – 30 35 – 60 70 – 80	-2LE -2LF	\$ 182 204 226 450

The capacitor state indication system consists of two yellow LED lights which illuminate only when the capacitor is energized and functioning at 65% or more of its rated kvar capacity.

The two light system will indicate a failure in any one of the three phases of the capacitor.

208 Volt availability

For 208 volt applications, derate the 240V capacitors. The kvar at 208V will be .75 times the kvar at 240V.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Optional mounting for individual capacitors

Туре	Enclosure sizes	Catalog number	List price	2
Wall mounting kit ②	43-93	WM83K	\$ 54	
Rack mounting style enclosure	53-93	Catalog # suffix -RM	74	

 ① For single phase capacitors, please consult your ABB representative.
 ② When the wall mounting kit is used with enclosure sizes 63, 83 & 93, it is recommended to order the rack style enclosure.

Low Voltage Products & Systems

Individual capacitors

3-phase ① 480 Volt, 60 Hz

.

480 Volt, 60 Hz - 3-Phase

		Rated	Approx.	Enclosure type								
Enclosure	kvar	current	shipping	Indoor – NEN	1A 1	Outdoor – NEM	IA 3R	Indoor – NEN	1A 12			
size	rating	(amps)	(lbs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price			
43	$\begin{array}{c} 1.5\\ 2\\ 2.5\\ 3\\ 4\\ 5\\ 6\\ 7.5\\ 8\\ 9\\ 10\\ 12\\ 12.5\\ 13\\ 13.5\\ 14\\ 15\\ 16\\ 17\\ 17.5\\ 18\\ 19\\ 20\\ 21\\ 22\\ 225 \end{array}$	1.8 2.4 3.0 3.6 4.8 6.0 7.2 9.0 9.6 10.8 12.0 14.4 15.0 15.6 16.2 16.8 18.0 19.2 20.4 21.7 22.8 24.1 25.3 26.5 27.1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 13 13 13 13 13 13 13 13 13 13 13 13	C484G1.5 C484G2 C484G2 C484G2 C484G3 C484G3 C484G5 C484G6 C484G5 C484G6 C484G10 C484G12 C484G12 C484G12 C484G13 C484G13 C484G15 C484G15 C484G15 C484G16 C484G17 C484G17 C484G17 C484G17 C484G19 C484G19 C484G20 C484G20 C484G22 C484G2	\$ 268 278 288 300 304 322 342 374 386 406 428 450 460 482 492 502 514 524 536 546 556 568 588 620 632 642	C484R1.5 C484R2 C484R2 C484R2 C484R3 C484R4 C484R5 C484R6 C484R6 C484R6 C484R10 C484R10 C484R12 C484R12 C484R12 C484R13 C484R13 C484R13 C484R15 C484R15 C484R16 C484R17 C484R17 C484R17 C484R17 C484R17 C484R18 C484R19 C484R20 C484R20 C484R21 C484R22 C484R2 C484R2 C484R3 C48	\$ 288 300 310 322 326 342 364 396 406 428 450 470 482 502 514 524 536 546 556 568 578 588 610 642 652 664	C484D1.5 C484D2 C484D2 C484D2 C484D3 C484D4 C484D5 C484D6 C484D6 C484D7.5 C484D8 C484D9 C484D10 C484D12 C484D12 C484D13 C484D13 C484D13 C484D13 C484D15 C484D14 C484D15 C484D16 C484D17 C484D17 C484D17 C484D18 C484D19 C484D20 C484D20 C484D22 C484D2	\$ 288 300 310 322 326 342 364 396 406 428 450 470 482 502 514 524 536 546 556 568 578 588 610 642 652 664			
	22.5 24 25 27 30	27.1 28.9 30.1 32.5 36.1	13 13 13 13 13 13	C484G22.5 C484G24 C484G25 C484G27 C484G30	642 664 674 706 738	C484R22.5 C484R24 C484R25 C484R27 C484R30	664 684 696 728 760	C484D22.5 C484D24 C484D25 C484D27 C484D30	664 684 696 728 760			
53	32.5 35 37.5 40 42.5 45 47.5 50	39.1 42.1 45.1 51.1 54.1 57.1 60.1	14 23 23 23 23 25 25 25 25 25	C485G32.5 C485G35 C485G37.5 C485G40 C485G42.5 C485G45 C485G45 C485G45 C485G47.5 C485G50	770 824 856 888 920 952 974 984	C485R32.5 C485R35 C485R37.5 C485R40 C485R42.5 C485R45 C485R45 C485R47.5 C485R50	792 846 878 910 942 974 996 1,006	C485D32.5 C485D35 C485D37.5 C485D40 C485D42.5 C485D45 C485D45 C485D47.5 C485D50	792 846 878 910 942 974 996 1,006			
63	52.5 55 57.5 60 62.5 65 70 75 77.5	63.1 66.2 69.2 72.2 75.2 78.2 84.2 90.2 93.2	37 37 37 37 37 37 37 39 39 39	C486G52.5 C486G55 C486G57.5 C486G60 C486G62.5 C486G65 C486G70 C486G70 C486G75 C486G77.5	1,028 1,060 1,102 1,124 1,156 1,198 1,242 1,370 1,456	C486R52.5 C486R55 C486R57.5 C486R60 C486R62.5 C486R65 C486R70 C486R70 C486R75 C486R77.5	1,048 1,080 1,124 1,144 1,178 1,220 1,262 1,392 1,476	C486D52.5 C486D55 C486D57.5 C486D60 C486D62.5 C486D65 C486D70 C486D77 C486D77.5	1,048 1,080 1,124 1,144 1,178 1,220 1,262 1,392 1,476			
83	80 85 87.5 90 95 100 105 110 115 120	96.2 102.2 105.2 108.3 114.3 120.3 126.3 132.3 138.3 144.3	56 56 56 56 56 59 61 76 76	C488G80 C488G85 C488G87.5 C488G90 C488G95 C488G100 C488G105 C488G110 C488G115 C488G115 C488G120	1,498 1,584 1,670 1,744 1,808 1,840 2,060 2,066 2,210 2,256	C488R80 C488R85 C488R85.5 C488R90 C488R90 C488R100 C488R105 C488R110 C488R110 C488R115 C488R120	1,520 1,606 1,690 1,766 1,830 1,862 2,082 2,106 2,232 2,278	C488D80 C488D87.5 C488D90 C488D95 C488D100 C488D105 C488D110 C488D115 C488D120	1,520 1,690 1,766 1,830 1,862 2,082 2,186 2,232 2,278			

Mounting options

For mounting options, see page 20.9. Base mounting is standard.

21 Capacitor state indication

See page 20.10.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

 $\ensuremath{\mathbb O}$ For single phase capacitors, please consult your ABB representative.

Individual capacitors 3 phase ① 600 Volt, 60 Hz

600 Volt, 60 Hz - 3 phase

		Rated	Approx. shipping weight (lbs.)	Enclosure type						
Enclosure	kvar	current		Indoor – NEN	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	A 12	
size	rating	(amps)		Catalog number	List price	Catalog number	List price	Catalog number	List price	
	2.2	1.9	8	C604G2.2	\$ 288	C604R2.2	\$ 310	C604D2.2	310	
	3	2.9	8	C604G3	300	C604R3	322	C604D3	322	
	4	3.8	8	C604G4	310	C604R4	332	C604D4	332	
	5	4.8	8	C604G5	332	C604R5	354	C604D5	354	
	7.5	7.2	8	C604G7.5	406	C604R7.5	428	C604D7.5	428	
43	10	9.6	8	C604G10	450	C604R10	470	C604D10	470	
	14	13.5	8	C604G14	492	C604R14	514	C604D14	514	
	15	14.4	8	C604G15	502	C604R15	524	C604D15	524	
	17.5	16.8	13	C604G17.5	578	C604R17.5	600	C604D17.5	600	
	20	19.2	13	C604G20	610	C604R20	632	C604D20	632	
	25	24.1	13	C604G25	664	C604R25	684	C604D25	684	
	30	28.9	13	C604G30	728	C604R30	750	C604D30	750	
	35	33.7	25	C605G35	834	C605R35	856	C605D35	856	
53	40	38.5	25	C605G40	898	C605R40	920	C605D40	920	
	45	43.3	25	C605G45	984	C605R45	1,006	C605D45	1,006	
	50	48.1	35	C605G50	1,070	C605R50	1,092	C605D50	1,092	
	60	57.7	37	C606G60	1,178	C606R60	1,198	C606D60	1,198	
63	70	67.4	39	C606G70	1,284	C606R70	1,306	C606D70	1,306	
00	75	72.2	39	C606G75	1,392	C606R75	1,412	C606D75	1,412	
	80	77.0	39	C606G80	1,540	C606R80	1,562	C606D80	1,562	
	90	86.6	54	C608G90	1,754	C608R90	1,776	C608D90	1,776	
	95	91.4	54	C608G95	1,820	C608R95	1,840	C608D95	1,840	
	100	96.2	56	C608G100	1,926	C608R100	1,948	C608D100	1,948	
	105	101.0	59	C608G105	1,984	C608R105	2,006	C608D105	2,006	
83	110	105.8	61	C608G110	2,100	C608R110	2,122	C608D110	2,122	
	115	110.7	76	C608G115	2,148	C608R115	2,170	C608D115	2,170	
	120	115.5	76	C608G120	2,184	C608R120	2,206	C608D120	2,206	
	125	120.3	76	C608G125	2,550	C608R125	2,572	C608D125	2,572	
	130	125.1	76	C608G130	2,684	C608R130	2,706	C608D130	2,706	
	135	129.9	76	C608G135	2,710	C608R135	2,732	C608D135	2,732	

Capacitor state indication system

480V & 600V kvar	LEDs catalog number suffix	List price
1 - 30 32.5 - 60 62.5 - 100 105 - 135	-2LE -2LF	\$ 182 204 224 450

The capacitor state indication system consists of two yellow LED lights which illuminate only when the capacitor is energized and functioning at 65% or more of its rated kvar capacity.

The two light system will indicate a failure in any one of the three phases of the capacitor.

Mounting options

For mounting options, see page 20.9. Base mounting is standard.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Individual capacitors with fuses and blown fuse indicators, 3 phase 240 Volt, 60 Hz

ABB low voltage capacitors are fully protected by the three levels of protection offered by the patented Sequential Protection System which includes dry self-healing capacitors, internally protected elements and the dry non-flammable vermiculite filler. However, some users have traditionally requested external fuses and blown fuse indicators, so these modified units are offered for those applications.

- Features include:
 - Dry, environmentally safe construction
 - Self healing capability
 Patented Internal Protected Elements
 - NEMA 1, 3R, 12
 - Easy electrical connection to large terminals
 - Convenient grounding lug
 - Mounting feet for easy installation
 - Suitable for floor or wall mounting
 - Includes three fuses and three blown fuse indication lamps

240 Volt, 60 Hz - 3 phase

		Rated		Approx.	Enclosure type						
Enclosure	kvar	per phase	Fuse amps/ type	shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	A 12	
size	rating	(amps)		(lbs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price	
	1	2.4	6/CC	8	C244G1-3FI	\$ 406	C244R1-3FI	\$ 428	C244D1-3FI	\$ 428	
	1.5	3.6	10/CC	8	C244G1.5-3FI	438	C244R1.5-3FI	460	C244D1.5-3FI	460	
	2	4.8	12/CC	8	C244G2-3FI	450	C244R2-3FI	470	C244D2-3FI	470	
	2.5	6.0	15/CC	8	C244G2.5-3FI	460	C244R2.5-3FI	482	C244D2.5-3FI	482	
	3	7.2	20/CC	8	C244G3-3FI	470	C244R3-3FI	492	C244D3-3FI	492	
	3.5	8.4	20/CC	8	C244G3.5-3FI	492	C244R3.5-3FI	514	C244D3.5-3FI	514	
	4	9.6	25/CC	8	C244G4-3FI	536	C244R4-3FI	556	C244D4-3FI	558	
	5	12.0	30/CC	8	C244G5-3FI	578	C244R5-3FI	600	C244D5-3FI	600	
	6	14.4	45/T	8	C244G6-3FI	600	C244R6-3FI	620	C244D6-3FI	620	
13	7	16.8	50/T	8	C244G7-3FI	642	C244R7-3FI	664	C244D7-3FI	664	
43	7.5	18.0	60/T	8	C244G7.5-3FI	664	C244R7.5-3FI	684	C244D7.5-3FI	684	
	8	19.2	60/T	8	C244G8-3FI	706	C244R8-3FI	728	C244D8-3FI	728	
	9	21.7	50/KGJ	14	C245G9-3FI	750	C245R9-3FI	770	C245D9-3FI	770	
	10	24.1	50/KGJ	14	C245G10-3FI	792	C245R10-3FI	814	C245D10-3FI	814	
	11	26.5	60/KGJ	14	C245G11-3FI	834	C245R11-3FI	856	C245D11-3FI	856	
	12	28.9	60/KGJ	14	C245G12-3FI	898	C245R12-3FI	920	C245D12-3FI	920	
	12.5	30.1	60/KGJ	14	C245G12.5-3FI	942	C245R12.5-3FI	964	C245D12.5-3FI	964	
	14	33.7	75/KGJ	14	C245G14-3FI	984	C245R14-3FI	1,006	C245D14-3FI	1,006	
	15	36.1	80/KGJ	14	C246G15-3FI	1,006	C246R15-3FI	1,028	C246D15-3FI	1,028	
53	17	40.9	80/KGJ	23	C246G17-3FI	1,112	C246R17-3FI	1,134	C246D17-3FI	1,134	
55	20	48.1	125/KGJ	23	C246G20-3FI	1,178	C246R20-3FI	1,198	C246D20-3FI	1,198	
	22.5	54.2	125/KGJ	23	C246G22.5-3FI	1,284	C246R22.5-3FI	1,306	C246D22.5-3FI	1,306	
	25	60.1	150/KGJ	23	C246G25-3FI	1,392	C246R25-3FI	1,412	C246D25-3FI	1,412	
	30	72.2	175/KGJ	23	C246G30-3FI	1,606	C246R30-3FI	1,626	C246D30-3FI	1,626	
	35	84.2	200/KGJ	23	C246G35-3FI	1,766	C246R35-3FI	1,786	C246D35-3FI	1,786	
	40	96.2	225/KGJ	25	C246G40-3FI	2,034	C246R40-3FI	2,054	C246D40-3FI	2,054	
	45	108.3	250/KGJ	34	C248G45-3FI	2,248	C248R45-3FI	2,268	C248D45-3FI	2,268	
63	50	120.3	250/KGJ	34	C248G50-3FI	2,462	C248R50-3FI	2,482	C248D50-3FI	2,482	
00	55	132	250/KGJ	37	C248G55-3FI	2,622	C248R55-3FI	2,642	C248D55-3FI	2,642	
	60	144.3	250/KGJ	37	C248G60-3FI	2,836	C248R60-3FI	2,856	C248D60-3FI	2,856	

208 Volt availability

For 208 volt applications, derate the 240V capacitors. The kvar at 208V will be .75 times the kvar at 240V.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Optional mounting for individual capacitors

Туре	Enclosure sizes	Catalog number	List price
Wall mounting kit @	43-93	WM83K	\$ 54
Rack mounting style enclosure	53-93	Catalog # suffix -RM	74

21

 $\odot\,$ When the wall mounting kit is used with enclosure sizes 63, 83 & 93, it is recommended to order the rack style enclosure.

1SXU000023C0202

Individual capacitors with fuses and blown fuse indicators, 3 phase 480 Volt, 60 Hz

480 Volt, 60 Hz - 3 phase

		Rated	Rated	Approx.	Enclosure type						
Enclosure	kvar	current	Fuse	Fuse shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	A 12	
size	rating	(amps)	amps/ type	(lbs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price	
43	$ \begin{array}{c} 1.5\\2\\2.5\\3\\4\\5\\6\\7.5\\8\\9\\10\\12\\12.5\\13\\13.5\\14\\15\\16\end{array} $	1.8 2.4 3.0 3.6 4.8 6.0 7.2 9.0 9.6 10.8 12.0 14.4 15.0 15.6 16.2 16.8 18.0 19.2	5/CC 6/CC 8/CC 10/CC 12/CC 25/CC 25/CC 25/CC 30/CC 30/CC 45/T 45/T 50/T 50/T 50/T 60/T	8 8 8 8 8 8 8 8 8 8 8 13 13 13 13 8 8 13	C484G1.5-3FI C484G2-3FI C484G2.5-3FI C484G3-3FI C484G3-3FI C484G5-3FI C484G5-3FI C484G6-3FI C484G9-3FI C484G9-3FI C484G10-3FI C484G12-3FI C484G12-3FI C484G13-3FI C484G13-3FI C484G13-3FI C484G15-3FI C484G15-3FI C484G15-3FI	\$ 418 422 428 432 438 442 460 514 546 568 588 600 610 620 624 632 652 652 654	C484R1.5-3FI C484R2.5-3FI C484R2.5-3FI C484R3-3FI C484R4-3FI C484R5-3FI C484R5-3FI C484R6-3FI C484R9-3FI C484R9-3FI C484R9-3FI C484R10-3FI C484R12-3FI C484R13.5-3FI C484R13.5-3FI C484R13.5-3FI C484R14-3FI C484R15-3FI	\$ 438 442 450 464 460 464 482 536 568 568 568 568 610 620 632 642 642 646 652 674 684	C484D1.5-3FI C484D2-3FI C484D2.5-3FI C484D2.5-3FI C484D3-3FI C484D4-3FI C484D5-3FI C484D5-3FI C484D7.5-3FI C484D9-3FI C484D9-3FI C484D10-3FI C484D12-3FI C484D12-3FI C484D13-3FI C484D13-3FI C484D13-5-3FI C484D14-3FI C484D15-3FI C484D16-3FI	\$ 438 442 450 464 460 464 482 536 568 588 610 620 632 642 642 646 652 674 684	
53	17 17.5 18 19 20 21 22 22.5 24 25 27	20.4 21.0 21.7 22.8 24.1 25.3 26.5 27.1 28.9 30.1 32.5	50/KGJ 50/KGJ 50/KGJ 50/KGJ 60/KGJ 60/KGJ 60/KGJ 75/KGJ 75/KGJ	14 14 14 14 14 14 14 14 14 14 14	C485G17-3FI C485G17.5-3FI C485G18-3FI C485G19-3FI C485G20-3FI C485G22-3FI C485G22-3FI C485G22-3FI C485G22-3FI C485G22-3FI C485G25-3FI C485G25-3FI C485G27-3FI	684 706 728 750 770 782 792 814 834 834 856 898	C485R17-3FI C485R17.5-3FI C485R18-3FI C485R19-3FI C485R20-3FI C485R20-3FI C485R22-3FI C485R22-3FI C485R22-3FI C485R25-3FI C485R25-3FI C485R25-3FI C485R27-3FI	706 728 750 770 792 802 814 834 856 878 920	C485D17-3FI C485D17.5-3FI C485D18-3FI C485D19-3FI C485D20-3FI C485D21-3FI C485D22-3FI C485D22-3FI C485D22-3FI C485D22-3FI C485D25-3FI C485D25-3FI C485D27-3FI	706 728 750 770 792 802 814 834 856 878 920	
63	30 32.5 35 37.5 40 42.5 45 47.5 50	36.1 39.1 42.1 45.1 51.1 54.1 57.1 60.1	80/KGJ 100/KGJ 100/KGJ 125/KGJ 125/KGJ 125/KGJ 125/KGJ 125/KGJ 150/KGJ	14 14 23 23 23 23 25 25 25 25	C486G30-3FI C486G32.5-3FI C486G35-3FI C486G35-3FI C486G40-3FI C486G40-3FI C486G42.5-3FI C486G45-3FI C486G45-3FI C486G45-3FI	964 1,016 1,070 1,092 1,112 1,178 1,242 1,284 1,284 1,326	C486R30-3FI C486R32.5-3FI C486R35-3FI C486R37.5-3FI C486R40-3FI C486R42.5-3FI C486R45-3FI C486R45-3FI C486R47.5-3FI C486R50-3FI	984 1,038 1,092 1,112 1,134 1,198 1,262 1,306 1,348	C486D30-3FI C486D32.5-3FI C486D35-3FI C486D37.5-3FI C486D40-3FI C486D42.5-3FI C486D42.5-3FI C486D47.5-3FI C486D47.5-3FI C486D50-3FI	984 1,038 1,092 1,112 1,134 1,198 1,262 1,306 1,348	
83	52.5 55 57.5 60 62.5 65 70 75 77.5	63.1 66.2 69.2 72.2 75.2 78.2 84.2 90.2 93.2	150/KGJ 150/KGJ 150/KGJ 175/KGJ 175/KGJ 200/KGJ 200/KGJ 200/KGJ	37 37 37 37 37 37 39 41 41	C488G52.5-3FI C488G55-3FI C488G57.5-3FI C488G60.3FI C488G62.5-3FI C488G65-3FI C488G70-3FI C488G70-3FI C488G77-3-3FI	1,370 1,412 1,456 1,476 1,530 1,540 1,584 1,626 1,658	C488R52.5-3FI C488R55-3FI C488R67.5-3FI C488R60-3FI C488R62.5-3FI C488R65-3FI C488R70-3FI C488R70-3FI C488R75-3FI C488R77.5-3FI	1,392 1,434 1,476 1,498 1,552 1,552 1,562 1,606 1,648 1,680	C488D52.5-3FI C488D55-3FI C488D57.5-3FI C488D60-3FI C488D62.5-3FI C488D65-3FI C488D65-3FI C488D70-3FI C488D75-3FI C488D77.5-3FI	1,392 1,434 1,476 1,498 1,552 1,562 1,606 1,648 1,680	
93	80 85 87.5 90 95 100 105 110 115 120	96.2 102.2 105.2 108.3 114.3 120.3 126.3 132.3 138.3 144.3	225/KGJ 225/KGJ 225/KGJ 225/KGJ 250/KGJ 250/KGJ 250/KGJ 250/KGJ 300/KGJ	56 56 56 56 56 59 61 76 76	C489G80-3FI C489G85-3FI C489G87.5-3FI C489G90-3FI C489G90-3FI C489G100-3FI C489G105-3FI C489G110-3FI C489G110-3FI C489G115-3FI C489G120-3FI	1,712 1,820 1,872 1,926 2,000 2,066 2,752 2,820 2,902 2,990	C489R80-3FI C489R85-3FI C489R87.5-3FI C489R90-3FI C489R90-3FI C489R100-3FI C489R105-3FI C489R105-3FI C489R115-3FI C489R115-3FI C489R120-3FI	1,734 1,840 1,894 2,022 2,086 2,774 2,842 2,924 3,012	C489D80-3FI C489D85-3FI C489D87-3FI C489D90-3FI C489D90-3FI C489D100-3FI C489D105-3FI C489D105-3FI C489D110-3FI C489D115-3FI C489D120-3FI	1,734 1,840 1,894 2,022 2,086 2,774 2,842 2,924 3,012	

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Mounting options

For mounting options, see page 20.12. Base mounting is standard.

Individual capacitors with fuses and blown fuse indicators, 3 phase 600 Volt, 60 Hz

600 Volt, 60 Hz – 3 phase

	1	Rated	I	Approx. Enclosure type						
Enclosure	kvar	current	Fuse	shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	IA 12
size	rating	(amps)	amps/	weight	Catalog	List	Catalog	List	Catalog	List
		(umpo)	туре	(IDS.)	number	price	number	price	number	price
	2.2	2.1	6/CC	8	C604G2.2-3FI	\$ 450	C604R2.2-3FI	\$ 470	C604D2.2-3FI	\$ 470
	3	2.9	8/CC	8	C604G3-3FI	460	C604R3-3FI	482	C604D3-3FI	482
	4	3.8	10/CC	8	C604G4-3FI	470	C604R4-3FI	492	C604D4-3FI	492
	5	4.8	12/CC	8	C604G5-3FI	492	C604R5-3FI	514	C604D5-3FI	514
42	7.5	7.2	20/CC	8	C604G7.5-3FI	556	C604R7.5-3FI	578	C604D7.5-3FI	578
43	10	9.6	25/CC	8	C604G10-3FI	600	C604R10-3FI	620	C604D10-3FI	620
	14	13.5	40/T	13	C604G14-3FI	632	C604R14-3FI	652	C604D14-3FI	652
	15	14.4	45/T	13	C604G15-3FI	664	C604R15-3FI	684	C604D15-3FI	684
	17.5	16.8	50/T	13	C604G17.5-3FI	750	C604R17.5-3FI	770	C604D17.5-3FI	772
	20	19.2	60/T	13	C604G20-3FI	856	C604R20-3FI	878	C604D20-3FI	878
50	25	24.1	50/KGJ	14	C605G25-3FI	898	C605R25-3FI	920	C605D25-3FI	920
55	30	28.9	60/KGJ	14	C605G30-3FI	1,006	C605R30-3FI	1,028	C605D30-3FI	1,028
-	35	33.7	75/KGJ	25	C606G35-3FI	1,112	C606R35-3FI	1,134	C606D35-3FI	1,134
62	40	38.5	80/KGJ	25	C606G40-3FI	1,230	C606R40-3FI	1,252	C606D40-3FI	1,252
03	45	43.3	100/KGJ	25	C606G45-3FI	1,284	C606R45-3FI	1,306	C606D45-3FI	1,306
	50	48.1	125/KGJ	35	C606G50-3FI	1,392	C606R50-3FI	1,412	C606D50-3FI	1,412
	60	57.7	125/KGJ	37	C608G60-3FI	1,498	C608R60-3FI	1,520	C608D60-3FI	1,520
83	70	67.4	150/KGJ	39	C608G70-3FI	1,606	C608R70-3FI	1,626	C608D70-3FI	1,626
00	75	72.3	175/KGJ	39	C608G75-3FI	1,658	C608R75-3FI	1,680	C608D75-3FI	1,680
	80	77.0	175/KGJ	39	C608G80-3FI	1,820	C608R80-3FI	1,840	C608D80-3FI	1,840
	90	86.6	200/KGJ	56	C609G90-3FI	2,000	C609R90-3FI	2,022	C609D90-3FI	2,022
	95	91.4	200/KGJ	56	C609G95-3FI	2,044	C609R95-3FI	2,066	C609D95-3FI	2,066
	100	96.2	225/KGJ	56	C609G100-3FI	2,086	C609R100-3FI	2,108	C609D100-3FI	2,108
	105	101.0	250/KGJ	59	C609G105-3FI	2,842	C609R105-3FI	2,864	C609D105-3FI	2,864
	110	105.8	250/KGJ	61	C609G110-3FI	2,922	C609R110-3FI	2,944	C609D110-3FI	2,944
93	115	110.7	250/KGJ	76	C609G115-3FI	3,020	C609R115-3FI	3,042	C609D115-3FI	3,042
	120	115.5	250/KGJ	76	C609G120-3FI	3,096	C609R120-3FI	3,096	C609D120-3FI	3,118
	125	120.3	250/KGJ	76	C609G125-3FI	3,376	C609R125-3FI	3,398	C609D125-3FI	3,398
	130	125.1	250/KGJ	76	C609G130-3FI	3,516	C609R130-3FI	3,538	C609D130-3FI	3,538
	135	129.1	250/KGJ	76	C609G135-3FI	3,548	C609R135-3FI	3,570	C609D135-3FI	3,570

NOTE: ABB's patented IPE design eliminates the need for additional

overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Mounting options

For mounting options, see page 20.12. Base mounting is standard.

Individual capacitors Pump jack 240 & 480 Volt, 60 Hz

Steel enclosure - 240 Volt, 60 Hz, 3 phase

Enclosure	kvar	Approx.	Catalog	List
size	rating	weight (lbs.)	number	price
43	2.5 3.5 5 10 12.5 14 15	8 8 8 13 8 8	P244R2.5 P244R3.5 P244R5 P244R10 P244R12.5 P244R14 P244R15	\$ 438 482 546 610 728 824 866

208 Volt availability

For 208 volt applications, derate the 240V capacitors. The kvar at 208V will be .75 times the kvar at 240V.

The CLMD-PJ capacitor is ideally suited for oil-field pumping units and other outdoor applications. Standard features include:

- Outdoor, weatherproof enclosure
- 4 feet of 10 gauge, 4-conductor wire for ease of installation
- Convenient pole-mounting design
- Lightweight, totally dry construction

Steel enclosure - 480 Volt, 60 Hz, 3 phase

Enclosure	kvar	Approx.	Catalog	List
size	rating	weight (lbs.)	number	price
43	1.5 2 3 4 5 6 7.5 10 15 20 21 22.5 25 25 27 30	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	P484R1.5 P484R2 P484R2 P484R3 P484R4 P484R5 P484R7.5 P484R7.5 P484R75 P484R20 P484R21 P484R21 P484R21 P484R25 P484R25 P484R25 P484R27 P484R30	\$ 386 396 418 438 460 482 492 514 578 738 760 802 846 802 846 888 952

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Individual capacitors Type CLMD-13 208, 240, 480 & 600 Volt, 60 Hz

208 Volt, 60 Hz, 3 phase

Enclosure	kvar	Rated current	Approx. shipping	Enclosure type Indoor — NEMA 1		
size	rating	per phase (amps)	weight (lbs)	Catalog number	List price	
	0.8	2.2	6	C201G0.8	\$ 246	
	1.1	3.1	6	C201G1.1	256	
	2	5.6	6	C201G2	300	
10	2.5	6.9	6	C201G2.5	322	
13	3	8.3	6	C201G3	354	
	4	11.1	6	C201G4	396	
	5	13.9	6	C201G5	482	
	7.5	20.8	6	C201G7.5	546	

240 Volt, 60 Hz, 3 phase

Enclosure	kvar	Rated current	Approx. shipping	Enclosure type Indoor — NEMA 1		
size	rating	per phase (amps)	weight (lbs)	Catalog number	List price	
	1	2.4	6	C241G1	\$ 236	
	1.5	3.6	6	C241G1.5	246	
	2	4.8	6	C241G2	256	
10	2.5	6.0	6	C241G2.5	288	
13	3.5	8.4	6	C241G3.5	322	
	5	12.0	6	C241G5	342	
	7.5	18.0	6	C241G7.5	438	
	10	24.1	6	C241G10	514	

480 Volt, 60 Hz, 3 phase

		Rated	Approx.	Enclosure type		
Enclosure	kvar	current	shipping	Indoor — NEMA 1		
size	rating	per phase	weight	Catalog	List	
		(amps)	(lbs)	number	price	
	0.9	1.1	6	C481G0.9	\$ 236	
	1.5	1.8	6	C481G1.5	256	
	2	2.4	6	C481G2	268	
	2.5	3.0	6	C481G2.5	278	
	3.5	4.2	6	C481G3.5	310	
	4	4.8	6	C481G4	314	
	5	6.0	6	C481G5	332	
13	6	7.2	6	C481G6	342	
	7.5	9.0	6	C481G7.5	354	
	8	9.6	6	C481G8	364	
	9	10.8	6	C481G9	374	
	10	12.0	6	C481G10	386	
	14	16.8	6	C481G14	406	
	15	18.0	6	C481G15	428	
	17	20.4	6	-	_	

The CLMD-13 capacitor is ideally suited for use in motor control centers, control panels and other indoor applications. Standard features include:

- Indoor, steel enclosure
- Easy electrical connection by means of a terminal block mounted on top of the capacitor enclosure (#4 #18GA)
- Convenient ground lug mounted on top of the capacitor enclosure
- Mounting feet for easy installation
- Lightweight, small dimensions, totally dry construction
- · Options and accessories include remote state indication

600 Volt, 60 Hz, 3 phase

		Rated	Approx.	Enclosure ty	ре
Enclosure	kvar	current	shipping	Indoor – NEM	1A 1
size	rating	per phase	weight	Catalog	List
	-	(amps)	(lbs)	number	price
	2	1.9	6	C601G2	\$ 288
	3	2.9	6	C601G3	300
	4	3.8	6	C601G4	310
13	5	4.8	6	C601G5	332
-	7.5	7.2	6	C601G7.5	354
	10	9.6	6	C601G10	386
	15	14.4	6	C601G15	438

Options

Туре	Catalog number suffix ${\mathbb O}$	List price adder
Remote state indication two LEDs	-2L	\$ 130

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

① Add suffix to end of catalog number.

21.16

Individual capacitors Type CLMD-13SC, Stud connected 208, 240, 480 & 600 Volt, 60 Hz

The CLMD-13SC (Stud Connected) capacitor is ideally suited for use in motor control centers, control panels and other indoor applications. Standard features include:

- Indoor, steel enclosure with cover
- Three stud terminals for electrical connection or capacitor parallel bus bar connection
- Mounting feet for easy capacitor installation
- Lightweight, small dimensions, totally dry construction

208 Volt, 60 Hz, 3 phase

Enclosure	kvar	Rated current	Approx. shipping	Enclosure type Indoor – NEMA 1		
size	rating	per phase (amps)	weight (lbs)	Catalog number	List price	
	0.8	2.2	6	C201G0.8SC	\$ 272	
	1.1	3.1	6	-	_	
	2	5.6	6	_	_	
12	2.5	6.9	6	C201G2.5SC	326	
15	3	8.3	6	_	_	
	4	11.1	6	C201G4SC	422	
	5	13.9	6	C201G5SC	508	
	7.5	20.8	6	C201G7.5SC	572	

240 Volt, 60 Hz, 3 phase

Enclosure	kvar	Rated current	Approx. shipping	Enclosure ty Indoor – NEM	pe IA 1
size	rating	per phase (amps)	weight (Ibs)	Catalog number	List price
	1	2.4	6	C241G1SC	\$ 262
	1.5	3.6	6	C241G1.5SC	294
	2	4.8	6	C241G2SC	304
12	2.5	6.0	6	C241G2.5SC	314
15	3.5	8.4	6	C241G3.5SC	346
	5	12.0	6	C241G5SC	368
	7.5	18.0	6	C241G7.5SC	464
	10	24.1	6	C241G10SC	540

480 Volt, 60 Hz, 3 phase

Enclosure size	kvar rating	Rated current per phase (amps)	Approx. shipping weight (lbs)	Enclosure ty Indoor – NEM Catalog number	be IA 1 List price
13	0.9 1.5 2 2.5 3.5 4 5 6 7.5 8 9 10 14 15	1.1 1.8 2.4 3.0 4.2 4.8 6.0 7.2 9.0 9.6 10.8 12.0 16.8 18.0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	C481G0.9SC C481G1.5SC C481G2.5SC C481G2.5SC C481G3.5SC C481G4SC C481G5SC C481G6SC C481G6SC C481G8SC C481G9SC C481G9SC C481G1SSC	\$ 262 282 304 336 340 358 368 378 390 400 410 432 454

600 Volt, 60 Hz, 3 phase

Enclosure	kvar	Rated current	Approx. shipping	Enclosure ty Indoor – NEM	pe IA 1
size	rating	per phase (amps)	weight (lbs)	Catalog number	List price
	2	1.9	6	C601G2SC	\$ 294
	3	2.9	6	C601G3SC	326
	4	3.8	6	C601G4SC	336
13	5	4.8	6	C601G5SC	358
	7.5	7.2	6	C601G7.5SC	378
	10	9.6	6	C601G10SC	410
	15	14.4	6	C601G15SC	464

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

Approximate dimensions

Individual capacitors

Individual units

INDIVIDUAL CAPACITOR UNITS								
ENCLOSURE	A	В	С	D	CONDUIT	RM		
SIZE					SIZES	E		
43	7.06 179.0	9.31 236.5	10.50 267.0	10.93 278.0	.50 – .75 12.7 – 19.0	N/A		
53	13.75 349.0	16.00 406.0	17.18 436.0	12.31 312.0	.75 - 1.0 19.05 - 25.4	5.00 127.0		
63	13.75 349.0	16.00 406.0	17.18 436.0	19.18 487.0	1.0 - 1.25 25.4 - 31.75	8.87 225.0		
83	13.75 349.0	16.00 406.0	17.18 436.0	26.56 675.0	1.25 - 1.50 31.75 - 38.0	8.87 225.0		
93	13.75 349.0	16.00 406.0	17.18 436.0	30.56 776.0	_	8.87 225.0		

WALL MOUNTING BRACKET KIT (WM83K) FOR ENCLOSURE SIZES 43, 53, 63, 83, 93

Pump jack capacitor - Steel, enclosure size 43

Approximate dimensions Individual capacitors

→ 00.00 → Inches

Pole mounting bracket for "PJ" (pump jack) capacitors

CLMD-13

CLMD-13 Drill plan

Network Quality

Approximate dimensions

Individual capacitors

<----00.00---► Inches

Fixed capacitor banks 3 phase, Internally protected elements 240 & 480 Volt, 60 Hz

Suitable for direct compensation where fixed power factor correction is desired.

Network Quality

- Features include:
 - Dry environmentally safe construction
 - Self healing capability
 - Patented Internal Protected Elements
 - Individual capacitors connected by bus bar
 - Indoor, dusttight or raintight enclosure
 - NEMA 1, 3R, 12
 - Easy mounting
 - · Easy electrical connection to large terminals
 - Convenient grounding lug

240 Volt, 60 Hz - 3 phase

			Approx.			Enclosure ty	ре		
Enclosure	kvar		shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	A 12
size	rating ①	Qty / kvar	weight (lbs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price
63	70 80 90 100 120 130 150 160 180 200 250 300	2/35 1/35, 1/40 2/45 2/55 2/60 1/40, 2/45 3/50 1/50, 3/55 3/60 4/50 5/50 5/60	155 155 155 155 155 235 235 235 155 235 310 370 370	F246G70 F246G80 F246G90 F246G100 F246G110 F246G120 F246G130 F246G150 F246G160 F246G160 F246G200 F246G200 F246G250 F246G300	Consult factory	F246R70 F246R80 F246R90 F246R100 F246R110 F246R120 F246R130 F246R150 F246R160 F246R180 F246R200 F246R250 F246R250 F246R200	Consult factory	F246D70 F246D80 F246D90 F246D100 F246D110 F246D120 F246D130 F246D150 F246D160 F246D180 F246D200 F246D250 F246D250 F246D300	Consult factory

480 Volt, 60 Hz - 3 phase

			Approx.			Enclosure ty	ре		
Enclosure	kvar	Ohu (Javan	shipping	Indoor – NEN	1A 1	Outdoor – NEM	IA 3R	Indoor – NEM	A 12
size	rating ①	Qly / Kvar	weight (lbs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price
63	125 130 140 150	1/55, 1/70 2/65 2/70 2/75	125 125 125 125	F486G125 F486G130 F486G140 F486G150		F486R125 F486R8130 F486R140 F486R150		F486D125 F486D130 F486D140 F486D150	
83	160 175 180 200	2/80 2/87.5 2/90 2/100	155 155 155 155	F488G160 F488G175 F488G180 F488G200		F488R160 F488R175 F488R180 F488R200		F488D160 F488D175 F488D180 F488D200	
63	220 225	1/70, 2/75 3/75	200 200	F486G220 F486G225	Consult factory	F486R220 F486R225	Consult factory	F486D220 F486D225	Consult factory
83	240 250 260 300 350 360 400 450 475 500 600	3/80 1/90, 2/80 2/90, 1/80 1/00, 2/90 3/100 4/87.5 4/90 4/100 5/90 5/95 5/100 6/100	235 235 235 235 310 310 310 370 370 370 450	F488G240 F488G250 F488G260 F488G380 F488G300 F488G350 F488G360 F488G400 F488G400 F488G500 F488G500 F488G600		F488R240 F488R250 F488R260 F488R300 F488R300 F488R350 F488R360 F488R400 F488R450 F488R450 F488R500 F488R500 F488R600		F488D240 F488D250 F488D260 F488D280 F488D300 F488D350 F488D350 F488D400 F488D400 F488D450 F488D475 F488D500 F488D500 F488D600	

208 Volt availability

For 208 volt applications, derate the 240V capacitors. The kvar at 208V will be .75 times the kvar at 240V.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

① For additional kvar ratings not listed above, please consult factory.

21.21

Fixed capacitor banks 3 Phase, Internally Protected Elements 600 Volt, 60Hz

600 volt, 60Hz – 3 phase

			Approx. Enclosure to				ре		
Enclosure	kvar	Qty / kvar	shipping	Indoor – NEN	1A 1	Outdoor – NEM	1A 3R	Indoor – NEM	A 12
size	rating 0		weight (Ibs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price
63	160	2/80	155	F606G160		F606R160		F606D160	
83	200	2/100	155	F608G200		F608R200		F608D200	
63	240	3/80	195	F606G240		F606R240		F606D240	
83	270 300	3/90 3/100	230 230	F608G270 F608G300	Consult factory	F608R270 F608R300	Consult factory	F608D270 F608D300	Consult factory
63	320	4/80	250	F606G320		F606R320		F606D320	
83	350 360 400 500 600	4/87.5 4/90 4/100 5/100 6/100	275 275 275 375 450	F608G350 F608G360 F608G400 F608G500 F608G600		F608R350 F608R360 F608R400 F608R500 F608R600		F608D350 F608D360 F608D400 F608D500 F608D600	

Capacitor state indication system

240V	480V & 600V	Catalog	List
kvar	kvar	number suffix	price adder
90 - 120 130 - 180 200 250 - 300 -	125 - 200 210 - 300 320 - 400 450 - 500 600	-2LE	Consult factory

The capacitor state indication system consists of two yellow LED lights which illuminate only when the capacitor is energized and functioning at 65% or more of its rated kvar capacity.

The two light system will indicate a failure in any one of the three phases of the capacitor.

Wall mounting assemblies

Туре	Catalog number	List price adder
Wall mounting kit, 2 - 6 units per bank	FBWM	Consult factory

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

 $\ensuremath{\mathbb O}$ For additional kvar ratings not listed above, please consult factory.

21.22

1SXU000023C0202

Fixed capacitor banks 3 Phase, 240 & 480 Volt, 60 Hz with three fuses and blown fuse indicators

ABB low voltage capacitors are fully protected by the three levels of protection offered by the patented Sequential Protection System which includes dry self-healing capacitors, internally protected elements and the dry non-flammable vermiculite filler. However, some users have traditionally requested external fuses and blown fuse indicators, so these modified units are offered for those applications.

Features include:

- Dry, environmentally safe construction
- Self healing capability
- Patented Internal Protected Elements
- Individual capacitors connected by bus bar
- NEMA 1, 3R, 12
- Easy mounting
- · Easy electrical connection to large terminals
- Convenient grounding lug
- Each individual capacitor includes three fuses and three blown fuse indication lamps

240 Volt, 60 Hz - 3 phase

			Approx.	Enclosure type					
Enclosure	kvar Qty / kvar	Qty / kvar	shipping	Indoor – NEMA 1		Outdoor – NEM	A 3R	Indoor – NEMA 12	
size	rating®		weight (Ibs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price
63	70 80 90 110 120 130 150 160 180 200 250 300	2/35 2/40 2/45 2/55 2/55 2/60 1/40, 2/45 3/50 1/50, 3/55 3/60 4/50 5/50 5/60	135 135 135 135 135 235 235 235 310 370 370	F246G70-3FI F246G80-3FI F246G100-3FI F246G110-3FI F246G110-3FI F246G120-3FI F246G130-3FI F246G150-3FI F246G160-3FI F246G200-3FI F246G200-3FI F246G250-3FI F246G300-3FI	Consult factory	F246R70-3FI F246R80-3FI F246R90-3FI F246R100-3FI F246R120-3FI F246R120-3FI F246R120-3FI F246R150-3FI F246R160-3FI F246R180-3FI F246R200-3FI F246R200-3FI F246R200-3FI	Consult factory	F246D70-3FI F246D80-3FI F246D100-3FI F246D100-3FI F246D120-3FI F246D120-3FI F246D130-3FI F246D130-3FI F246D180-3FI F246D180-3FI F246D200-3FI F246D200-3FI F246D250-3FI F246D250-3FI	Consult factory

480 Volt, 60 Hz - 3 phase

			Approx.			Enclosure ty	pe	-	
Enclosure	kvar	Qty / kvar	shipping	Indoor – NEM	1A 1	Outdoor – NEM	A 3R	Indoor – NEM	A 12
size	rating		weight	Catalog	List	Catalog	List	Catalog	List
			(ibs.)	number	price	number	price	number	price
	125	1/55, 1/70	135	F486G125-3FI		F486R125-3FI		F486D125-3FI	
63	130	2/65	135	F486G130-3FI		F486R130-3FI		F486D130-3FI	
	140	2/70	135	F486G140-3FI		F486R140-3FI		F486D140-3FI	
	150	2/75	135	F486G150-3FI		F486R150-3FI		F486D150-3FI	
	160	2/80	155	F488G160-3FI		F488R160-3FI		F488D160-3FI	
83	175	2/87.5	155	F488G175-3FI		F488R175-3FI		F488D175-3FI	
00	180	2/90	155	F488G180-3FI		F488R180-3FI		F488D180-3FI	
	200	2/100	155	F488G200-3FI		F488R200-3FI		F488D200-3FI	
62	220	1/70, 2/75	200	F486G220-3FI	Consult	F486R220-3FI	Consult	F486D220-3FI	Consult
05	225	3/75	200	F486G225-3FI	factory	F486R225-3FI	factory	F488D225-3FI	factory
-	240	3/80	235	F488G240-3FI	Ī	F488R240-3FI		F488D240-3FI	Ī
	250	1/90, 2/80	235	F488G250-3FI		F488R250-3FI		F488D250-3FI	
	260	2/90, 1/80	235	F488G260-3FI		F488R260-3FI		F488D260-3FI	
	280	1/100, 2/90	235	F488G280-3FI		F488R280-3FI		F488D280-3FI	
	300	3/100	235	F488G300-3FI		F488R300-3FI		F488D300-3FI	
83	350	4/87.5	310	F488G350-3FI		F488R350-3FI		F488D350-3FI	
00	360	4/90	310	F488G360-3FI		F488R360-3FI		F488D360-3FI	
	400	4/100	310	F488G400-3FI		F488R400-3FI		F488D400-3FI	
	450	5/90	370	F488G450-3FI		F488R450-3FI		F488D450-3FI	
	475	5/95	370	F488G475-3FI		F488R475-3FI		F488D475-3FI	
	500	5/100	370	F488G500-3FI		F488R500-3FI		F488D500-3FI	
	600	6/100	450	F488G600-3FI		F488R600-3FI		F488D600-3FI	

208 Volt availability

For 208 volt applications, derate the 240V capacitors. The kvar at 208V will be .75 times the kvar at 240V.

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

① For additional kvar ratings not listed above, please consult factory.

21.23

Fixed capacitor banks 3 phase, 600 Volt, 60 Hz with three fuses and blown fuse indicators

600 volt, 60Hz – 3 phase

			Approx.			Enclosure type			
Enclosure	kvar Qty / kvar	Qty / kvar	Qty / kvar shipping	Indoor – NEN	Indoor – NEMA 1		1A 3R	Indoor – NEMA 12	
size	rating®		weight (Ibs.)	Catalog number	List price	Catalog number	List price	Catalog number	List price
63	160	2/80	155	F606G160-3FI		F606R160-3FI		F606D160-3FI	Consult factory
83	200	2/100	155	F608G200-3FI		F608R200-3FI	Consult factory	F608D200-3FI	
63	240	3/80	195	F606G240-3FI		F606R240-3FI		F606D240-3FI	
83	270 300	3/90 3/100	230 230	F608G270-3FI F608G300-3FI	Consult factory	F608R270-3FI F608R300-3FI		F608D270-3FI F608D300-3FI	
63	320	4/80	250	F606G320-3FI		F606R320-3FI		F606D320-3FI	
83	350 360 400 500 600	4/87.5 4/90 4/100 5/100 6/100	275 275 275 375 450	F608G350-3FI F608G360-3FI F608G400-3FI F608G500-3FI F608G600-3FI		F608R350-3FI F608R360-3FI F608R400-3FI F608R500-3FI F608R600-3FI		F608D350-3FI F608D360-3FI F608D400-3FI F608D500-3FI F608D600-3FI	

Capacitor state indication system

240V	480V & 600V	Catalog	List
kvar	kvar	number suffix	price adder
90 - 120 130 - 180 200 250 - 300 -	125 - 200 210 - 300 320 - 400 450 - 500 600	-2LE	Consult factory

The capacitor state indication system consists of two yellow LED lights which illuminate only when the capacitor is energized and functioning at 65% or more of its rated kvar capacity.

The two light system will indicate a failure in any one of the three phases of the capacitor.

Wall mounting assemblies **2**

Туре	Catalog number	List price adder
Wall mounting kit, 2 – 6 units per bank	FBWM	Consult factory

NOTE: ABB's patented IPE design eliminates the need for additional overcurrent protection when capacitors are electrically connected on the load side of a motor starter circuit breaker or fusible disconnect switch.

① For additional kvar ratings not listed above, please consult factory.

21.24

Approximate dimensions Fixed capacitor bank, floor mounted

→ 00.00 → Inches

Unit Size	н
CLMD-53	22.50
CLMD-63	29.50
CLMD-83	36.50

Approximate dimensions

Fixed bank, wall mounted

← 00.00 → Inches

NOTE 1: POSITION SPLIT RINGS TOWARD OUTSIDE OF BANK

NO. OF CAPS	MTG WIDTH "W"
2	17.0
3	25.0
4	33.0
5	41.0
6	49.0

MOUNT CAPACITOR ASSEMBLY TO WALL USING FOUR (4) 1/2" BOLTS. "KEY HOLE" MOUNTING HOLES ARE PROVIDED AT TOP OF MOUNTING BRACKETS.

WALL MOUNTING BRACKETS ARE ATTACHED TO FIXED BANK USING FOUR (4) 1/2-13 X 1.25" BOLTS AS SHOWN. TORQUE HARDWARE TO 50 LBS-FT.

AutoBank 300 & 1200

ABB 300 & 1200 Automatic banks

ABB provides the complete solution to automatic power factor correction by packaging proven ABB components. ABB capacitors, contactors, power factor controllers, circuit breakers, fusible disconnects, and ABB pushbuttons together provide a system of the highest quality. ABB capacitors provide exceptional performance using an environmentally safe dry type design. ABB provides a complete range of contactors designed for capacitor switching. ABB's power factor controller offers an easy-to-use microprocessor-based controller with built-in power factor meter. A variety of disconnect options are available, including ABB circuit breakers, fusible and non-fusible switches.

Modularity

The modular design allows for the installation of additional power and switch modules as well as various options. Additional units may be connected in parallel. The number of capacitors and contactors included in the power modules depends on the automatic capacitor bank total power and the possible requirement for anti-resonance reactors.

Options

Anti-resonance reactors, filters, blown fuse indication, push to test blown fuse indication, non-fused and fused disconnect switches and circuit breakers are optional equipment items that can be factory installed in the automatic capacitor bank.

Approvals

ABB AutoBanks can be UL Panel Listed (UL File # E105450) per application.

• High reliability

The ABB AutoBank incorporates the wellproven features of ABB dry type power factor correction capacitor technology. The use of an ABB power factor controller and endurancetested ABB contactors ensure the highest reliability of the equipment.

Very low losses

Capacitor total losses are less than 0.5 watts per kvar. AutoBank total losses (without reactors), including accessories such as power factor controller and contactors are less than 1.5 watts per kvar.

Complete environmental acceptability

ABB capacitors have a dry type dielectric with no free liquid and do not pose any risk of leakage or pollution of the environment.

Unique sequential protection system

3 phase ABB capacitors are included with AutoBank products. These ABB capacitors utilize a patented Sequential protection System which ensures that each individual capacitor element is selectively and reliably disconnected from the circuit at the end of its life.

Long life

Low losses and the self-healing properties of ABB capacitor elements help to ensure long operating life.

AutoBank

General information Description & technical data Catalog number explanation

Safety

ABB capacitors are manufactured with vermiculite, a nonflammable and nontoxic material. The dry vermiculite safely absorbs any energy produced within the capacitor enclosure and prevents any fire hazard in case of failure. Unique cooling fins are fitted to surround each capacitor element providing effective heat dissipation.

ABB power factor controller

ABB microprocessor-based and programmable Power Factor Controllers (PFCs) provide for the setting of the target power factor and the sensitivity of the system regulation. The PFCs maintain the selected power factor by switching on or off one or more capacitor steps depending on the load conditions of the system.

Compact design ensures quick installation

The AutoBank has compact overall dimensions, top or bottom cable entry access, and lifting eyes aid in fast, efficient handling and installation.

Harmonic effect on capacitors

Combinations of capacitors and system reactances form series and parallel tuned circuits at certain frequencies. When harmonic sources are added to the system, this can result in higher than rated currents or higher than rated voltages on the system components.

AutoBanks can be designed to operate in harmonic environments. Tuning reactors are added to keep the capacitor currents within rated values and keep system voltages to desired levels. Tuning frequencies of the AutoBank can be designed to suit your system requirements. Please consult factory.

Contents

- Standard ABB AutoBank products include:
- •1 to 12 capacitor steps, three phase •Incoming line termination (unless other
- disconnecting means is specified)
- Capacitor stage indicator lights
- Power on light
- •One ABB power factor controller equipped with:
 - Programmable thresholds which allow protection of the capacitor bank from over and undervoltage, overtemperature and excessive harmonic distortion
 - Full graphics LCD display
 - Manual/automatic control
 - Indication of capacitive or inductive load and the number of steps energized
 - Measures and monitors kW, kVA, kVAr, Vrms, Arms, Temperature, THDV(%), THDI(%), Hz, power factor, voltage harmonics V2-V49(%), current harmonics I2-I49(%), alarm
 - Customizable switching sequence, linear or circular - normal or integral
 direct or progressive switching strategies available
 - Automatic adaptation to network phase rotation and C.T. terminals
- ABB contactors
- Discharge resistors
- •Power fuses
- •Control fuses
- •Multi-tap CT range 500/5 4000/5 in 500/5 increments. Window size 4" x 7"

Technical data

Rated voltage: 240 – 600V, 50/60 Hz, 3 phase Standard kvar steps: 25, 50 & 100 kvar (other kvar step sizes available)

Control voltage: 120V, 60 Hz

Power factor setting: Between 0.70 capacitive and 0.7 inductive

C/k setting: Between 0.05 and 1A

Operation: Automatic or manual with step indication. LED indication of the number of capacitors energized and the capacitive or inductive demand.

Discharge resistors included

Dielectric losses: Less than 0.2 watt/kvar

Capacitor total losses: Less than 0.5 watt/ kvar

Automatic bank total losses (without reactors) including accessories such as contactors and PF controller): Less than 1.5 watt/kvar

ABB dry type self-healing capacitors

Capacitor dielectric test:

•Between terminals and container: 3.0 kV, 60 seconds.

Capacitor automatic bank test:

Functional test

Dielectric test

Enclosures:

 NEMA 1, 3R and Dustproof (RAL 7032, Beige)

Top or bottom cable entry

Dimensions: Per application

Ambient temperature: -40°C to +40°C

Installation: Lifting eyes are provided. Installation instructions are supplied with each unit.

NOTICE

Placement and orientation of the current transformer are very important for the correct operation of the automatic capacitor bank.

AutoBank 300 240, 480 & 600 Volt, 60 Hz

Description

Automatic power factor correction system in a compact design.

- Ratings: 240V: 25 150 kvar 480V: 50 – 300 kvar
 - 600V: 100 300 kvar
- Size: 66"H x 32"W x 20"D
- Fusing: Each step and each phase
- Proven ABB Components:
 - ABB dry-type capacitors ABB micro-processor based controller ABB contactors rated for capacitive switches
- CT Split core multi-tap CT provided with each AutoBank
- Options: ABB main circuit breaker Blown fuse indication Push-to-test blown fuse indication Outdoor enclosure Dustproof enclosure

240 Volt

		Indoor		Outdoor		Dustproof	
kvar	Approximate weight (lbs)	Catalog number	List price	Catalog number	List price	Catalog number	List price
25 50 75 100 125 150	600 600 600 600 600 600	AA2G25B5A AA2G50B5A AA2G75B6A AA2G100B8A AA2G125B10A AA2G150B12A	Consult factory	AA2R25B5A AA2R50B5A AA2R75B6A AA2R100B8A AA2R125B10A AA2R150B12A	Consult factory	AA2D25B5A AA2D50B5A AA2D75B6A AA2D100B8A AA2D125B10A AA2D150B12A	Consult factory

480 Volt

		Indoor		Outdoor		Dustproof	
kvar	Approximate weight (lbs)	Catalog number	List price	Catalog number	List price	Catalog number	List price
50 75 100 125 150 175 200 225 250 300	600 600 600 600 600 600 600 600 600 600	AA4G50B3B AA4G75B5A AA4G100B5A AA4G152B5A AA4G150B6A AA4G150B6A AA4G150B6A AA4G200B8A AA4G225B9A AA4G250B10A AA4G300B12A	Consult factory	AA4R50B3B AA4R75B5A AA4R100B5A AA4R125B5A AA4R150B6A AA4R150B6A AA4R150B6A AA4R200B8A AA4R200B8A AA4R225B9A AA4R250B10A AA4R300B12A	Consult factory	AA4D50B3B AA4D75B5A AA4D100B5A AA4D125B5A AA4D150B6A AA4D150B6A AA4D150B6A AA4D200B8A AA4D225B9A AA4D250B10A AA4D2300B12A	Consult factory

600 Volt

		Indoor		Outdoor		Dustproof	
kvar	Approximate weight (lbs)	Catalog number	List price	Catalog number	List price	Catalog number	List price
100 125	600 600	AA6G100B5A AA6G125B5A		AA6R100B5A AA6R125B5A		AA6D100B5A AA6D125B5A	
175 200	600 600	AA6G175B7A AA6G200B8A	Consult factory	AA6R150B6A AA6R175B7A AA6R200B8A	Consult factory	AA6D150B6A AA6D175B7A AA6D200B8A	Consult factory
225 250 300	600 600 600	AA6G225B9A AA6G250B10A AA6G300B12A		AA6R225B9A AA6R250B10A AA6R300B12A		AA6D225B9A AA6D250B10A AA6D300B12A	

For other kvar sizes, number of steps, or options, please consult your local ABB Control representative.

NOTE: ABB automatic banks can be designed for harmonic environments. Please consult the factory concerning harmonic issues.

21.29

AutoBank 1200 480 & 600 Volt, 60 Hz

Description

- Modular design delivers sought after features:
- 480V & 600V units
- Compact size
- Easy installation & start-up - Bottom & top cable entry
- Simple to operate ABB controller
- Copper bus bar
- Fusing of each step and in each phase
- Proven ABB components
 - ABB dry type capacitors
 - ABB micro-processor based controller
- ABB contactors rated for capacitor switching
- Options
 - ABB circuit breakers or fusible & non-fusible disconnect switches
 - Blown fuse indication
 - Push to test
 - Outdoor enclosures
 - Dustproof enclosures
- Consult factory for other sizes
- CT: split core, multi-tap current transformers provided with each AutoBank

480 Volt

		Indoor		Outdoor		Dustproof	
kvar	Approximate weight (lbs)	Catalog number	List price	Catalog number	List price	Catalog number	List price
100 125 150 175 200 225 250 300 350 400 450 550 600 650 700 800 900 1000 1100 1200	1000 1000 1000 1000 1000 1000 1000 1200 1200 1200 1200 1200 1200 1200 1200 1900 19	A4G100B2A A4G125B3B A4G125B3B A4G175B4B A4G200B4A A4G225B5B A4G250B5A A4G300B6A A4G300B6A A4G300B6A A4G450B9A A4G50B10A A4G500B10A A4G650B7B A4G600B12A A4G600B7A A4G600B9A A4G1000B10A A4G1100B11A A4G1200B12A	Consult factory	A4R100B2A A4R125B3B A4R125B3B A4R145B4B A4R200B4A A4R250B5A A4R250B5A A4R300B6A A4R300B6A A4R300B10A A4R500B10A A4R650B71B A4R600B12A A4R600B12A A4R600B9A A4R1000B10A A4R1000B10A A4R1000B10A	Consult factory	A4D100B2A A4D125B3B A4D155B3B A4D150B3A A4D175B4B A4D200B4A A4D225B5B A4D250B5A A4D300B6A A4D300B6A A4D450B9A A4D450B10A A4D500B10A A4D650B7B A4D700B7A A4D600B12A A4D900B9A A4D1000B10A A4D1000B10A A4D1100B11A A4D1200B12A	Consult factory

600 Volt

		Indoor		Outdoor		Dustproof	
kvar	Approximate	Catalog	List	Catalog	List	Catalog	List
	weight (lbs)	number	price	number	price	number	price
100	1000	A6G100B2A		A6R100B2A		A6D100B2A	
125	1000	A6G125B3B		A6R125B3B		A6D125B3B	
150	1000	A6G150B3A		A6R150B3A		A6D150B3A	
175	1000	A6G175B4B		A6R175B4B		A6D175B4B	
200	1000	A6G200B4A		A6R200B4A		A6D200B4A	
225	1000	A6G225B5B		A6R225B5B		A6D225B5B	
250	1000	A6G250B5A		A6R250B5A		A6D250B5A	
300	1000	A6G300B6A		A6R300B6A		A6D300B6A	
350	1000	A6G350B7A		A6R350B7A		A6D350B7A	
400	1200	A6G400B8A	Consult	A6R400B8A	Consult	A6D400B8A	Consult
450	1200	A6G450B9A	factory	A6R450B9A	factory	A6D450B9A	factory
500	1200	A6G500B10A		A6R500B10A		A6D500B10A	
550	1200	A6G550B11A		A6R550B11A		A6D550B11A	
600	1200	A6G600B12A		A6R600B12A		A6D600B12A	
650	1800	A6G650B7B		A6R650B7B		A6D650B7B	
700	1800	A6G700B7A		A6R700B7A		A6D700B7A	
800	1800	A6G800B8A		A6R800B8A		A6D800B8A	
900	1800	A6G900B9A		A6R900B9A		A6D900B9A	
1000	2100	A6G1000B10A		A6R1000B10A		A6D1000B10A	
1100	2100	A6G1100B11A		A6R1100B11A		A6D1100B11A	
1200	2100	A6G1200B12A		A6R1200B12A		A6D1200B12A	

Factory modifications Approximate dimensions AutoBank

← 00.00 → Inches

Current transformers (split core)

This split core current transformer is designed for use with automatic capacitor banks. The primary current will be determined by:

$$I = \frac{kVA \times 1000}{V \times 1.732}$$

The kVA value should represent the peak quarterhour demand. Split core current transformers are designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables. The portion of the transformer marked "this end removable" can be disassembled and then reassembled around the conductors that require current monitoring. The current transformer must have its secondary terminals short-circuited or the load connected before energizing the primary circuit.

Multi-tap split core current transformers provided with each AutoBank.

Approximate dimensions

RATIO TAPS 500:5 X1 - X2 1000:5 X3 - X4 1500:5 X2 - X3 2000:5 X1 - X3 X2 - X4 2500:5 3000:5 X1 - X4 3500:5 X2 - X5 4000:5 X1 - X5

Network Quality

Approximate dimensions

AutoBank 300

← 00.00 → Inches

OUTDOOR BANK, NEMA 3R

Approximate dimensions AutoBank 1200

	OVERALL WIDTH								
KVAR	MAIN LUGS	CIRCUIT BREAKER	FUSED SWITCH	NON-FUSED SWITCH					
100	36	36	36	36					
125	36	36	36	36					
150	36	36	36	36					
175	36	36	36	36					
200	36	36	36	36					
225	36	36	36	36					
250	36	36	36	36					
300	36	36	36	36					
350	36	36	48	48					
400	36	36	48	48					
450	48	48	72	72					
500	48	48	—	72					
550	48	48	—	72					
600	48	48	—	72					
650	72	72	—	84					
700	72	84	—	84					
800	72	84	—	84					
900	84	96	_	96					
1000	84	96	_	96					
1100	84	96		120					
1200	84	96	—	120					

21.34 1SXU000023C0202 Low Voltage Products & Systems

DynaComp

One cycle response, transient-free capacitor switching with no limit to the number of operations

Typical applications

- Any critical loads which cannot be interrupted by transients:
 - Hospitals
 - Airports
 - Computer networking centers
 - High technology manufacturing operations Others
- Loads which require extremely rapid switching (less than one cycle, 16.7 ms) reactive compensation: Welders
 - Elevators
 - DC winches (off-shore oil platforms) Mining drag lines
 - Mining conveyors
 - Rolling mills
 - Cranes (Port Authority)
 - Ski lift drives
 - Stamping
 - Saw mills
 - Light rail transit systems Others

Product description

The ABB Dynamic Response Compensator or DynaComp is a capacitor or filter circuit switched by solid state power electronic devices without any moving parts. It is the ultimate solution to the most demanding applications in rapid power factor compensation, filtering or transient control.

Reactive load switching which causes disturbances on the network or where very rapid compensation or filtering is required are major applications for DynaComp. DynaComp's solid state switching concept, combined with the well proven features of ABB power capacitor technology, provides the following exceptional advantages:

• Dynamic response time and ultra-rapid switching

DynaComp's solid state switching allows it to achieve dynamic response times in the range of <u>one cycle</u>. A typical application of DynaComp is for lifting devices requiring rapidly varying amounts of reactive power. By installing a DynaComp close to a crane or an elevator, voltage drops can be minimized and disturbances on other equipment avoided. Simultaneously, the reactive power will be efficiently compensated locally, an impossible task with conventional equipment. The principle applies to many other types of equipment with sudden large reactive power requirements such as large motors, welders, large injection molding machines, etc.

General information DynaComp

Transient free switching

DynaComp does not disturb sensitive networks or sensitive equipment. The switching operation is executed by solid state devices, whose main advantage is to enable transient free switching with no wearing parts.

• Frequent switching capability

The absence of moving parts ensures Dyna-Comp a high reliability without limitation of the number of switching applications. Welding and lifting devices are typical applications of loads requiring large amounts of reactive power with a frequent switching cycle. Switching events in the range of over 100,000 times per day are achievable with DynaComp

• High reliability

DynaComp incorporates the well proven features of ABB dry type power factor capacitor technology. Thyristor switching uses no moving parts. The DynaComp can be UL panel listed per application.

Versatility & Options

DynaComp's electronic solid state switching is applicable to capacitor banks and detuned or tuned filter banks. An important advantage with filter applications is the improvement in rapidly switching of the filter bank. The DynaComp can be provided with an ABB main breaker or main fused or non-fused disconnect switch.

Modularity & Expansion

Although DynaComp products must be designed for individual applications, they can be constructed rapidly due to their modular design. Additional units may be connected in parallel, allowing for the same reliable switching functions.

Safety

ABB capacitors are filled with vermiculite, a nonflammable and nontoxic material. The dry vermiculite safely absorbs any energy produced within the capacitor enclosure and

<u>D 4 G 500 C 10 A</u>

prevents any fire hazard in case of failure. Unique cooling fins are fitted to surround each capacitor element and to provide effective heat dissipation.

Long life

The absence of moving parts and the selfhealing properties of ABB capacitor elements ensure the DynaComp's long life.

Unique Sequential Protection System

The ABB patented Sequential Protection System ensures that each individual capacitor element is selectively and reliably disconnected from the circuit at the end of its life.

Complete environmental acceptability

ABB capacitors have a dry type dielectric with no free liquid and do not pose any risk of leakage or pollution of the environment.

ABB VAR controller

ABB microprocessor-based and programmable VAR controller maintains VAR flows to desired levels.

Compact design ensures quick installation

DynaComp's compact overall dimensions, standard top entry cable access, and lifting eyes aid in fast, efficient handling and installation.

Harmonic Effect on Capacitors

Combinations of capacitors and system reactances form series and parallel tuned circuits at certain frequencies. When harmonic sources are added to the system, this can result in higher than rated currents or higher than rated voltages on the system components.

DynaComp can be designed to operate in harmonic environments. Tuning reactors are added to keep the capacitor currents within rated values and keep system voltages to desired levels. Tuning frequencies of the DynaComp can be designed to suit your system requirements. Please consult factory.

Contents

DynaComp products include:

- Incoming line termination (unless other disconnecting means is specified.)
- One or more capacitor steps, single or three phase
- One ABB RVT-D controller equipped with: - Automatic no-voltage release
 - Menu driven interface w/LCD display
 - Icon indicating a capacitive or inductive load add the number of steps energized.
 Circular or linear switching
- ABB capacitors
- One DynaSwitch per capacitor step
- Discharge resistors
- Power fuses
- Control fuses
- Multi-tap CT range: 500/5 4000/5 in 500/5 increments. Window size 4" x 7".

Technical Data

Rated voltage

Up to 240-600V, 50/60Hz, single or 3 phase

Capacitor step rating

Up to 400 kvar at 480V

Operation: Automatic or manual with step indication. LED indication of the number of capacitors energized and the capacitive or inductive demand.

Discharge resistors included.

ABB dry type self-healing capacitors.

Enclosures: NEMA 1, 3R & Dustproof

Dimensions: Per application

Ambient temp.: -40°C to +40°C

Installation: Lifting eyes are provided. Installation instructions are supplied with each unit.

Catalog numbering explanation

Harmonic tuning (consult factory)

- Switching sequence A 1:1:1:1 B 1:2:2:2 C 1:2:4:4 D 1:2:4:8:8
 Number of capacitors

 Disconnect means C=Circuit Breaker, D=Non-fused disconnect
 kvar rating switch, F=Fused disconnect switch
 Enclosure type G=NEMA 1, R=NEMA 3R, D=Dust proof
 - **Voltage 2** = 240V, **4** = 480V, **6** = 600V
 - Model D=DynaComp

Wer vpe Pc.

Power^{IT} Active Filter Type PQF

Typical application

Power distribution systems which require multiple harmonic elimination or power factor correction.

Product description

The power quality filters developed by ABB are active filters offering unprecedented ability to eliminate harmonics from the network. The PQF eliminates harmonics in a controlled way. It is easy to expand and adapt to changes in the network. The PQF monitors the line current in real time and processes the measured harmonics as digital signals in a high-power DSP (Digital Signal Processor). The output of the DSP controls PWM (Pulse Width Modulated) power modules that through line reactors inject harmonic currents with exactly the opposite phase to those that are to be filtered. The net effect is an elimination of the harmonics and a clean sine-wave as seen by the feeding transformer. The PQF is UL approved (UL File # E254288).

PQF sizing information

Consult your local ABB representative or the factory for assistance in sizing your PQF filter.

General information Power quality filter

Harmonics and power quality

Harmonics caused by non-linear electrical loads such as variable speed drives, rectifiers, UPS's, computers, etc., are a growing problem both for electricity suppliers and users.

Harmonics can lead to serious problems:

- overheating of cables, motors and transformers
- · damage to sensitive equipment
- · tripping of circuit breakers
- · blowing of fuses • premature aging of the installation

The ABB solution: PQF power quality filters

The ABB Power Quality Filter offers unprecedented ability to clean the network from harmonics. The PQF actively eliminates the harmonics present in the supply system in a controlled way. It is insensitive to large network impedance changes due to change in network topology like paralleling of sources, or switching between mains supply and generator operation.

The PQF monitors the line current in real time and processes the measured harmonics as digital signals in a high-power multi-DSP (Digital Signal Processor) based system. The digital controller generates Pulse Width Modulated (PWM) signals that drive IGBT power modules which through line reactors inject harmonic currents in the network with exactly the opposite phase to the components that are to be filtered.

The PQF also offers communication facilities with the customer's existing communication network. This feature which uses Modbus RTU, allows the PQF to be easily monitored and controlled from a remote location. The Modbus communication feature can be used by means of an RS-232 to RS-485 converter (optional).

Advantages of the PQF

- Filters up to 20 harmonics simultaneously
- Filters up to the 50th harmonic
- Harmonic attenuation factor better than 97%
- Fulfilment of International Guidelines like G5/4, IEEE 519, etc
- Filters with closed loop control for best accuracy
- Is not overloadable
- Has a programmable filtering strategy and free choice of harmonics selection
- Fault and event logging with real time stamp
- Direct connection up to 690V
- Top or bottom cable entry (optional for PQFI)
- Easy commissioning Auto-detection of CT Polarity
- May filter without generation of reactive power
- May generate reactive power and control power factor
- May balance the load current across the phases
- Has programmable task priorities
- Does not require detailed network analysis
- Does not require special CTs
- Is easy to extend on site
- Comes factory tested
- Auto-adaptation to network impedance changes
- Optical fibre isolation between power and control stages
- Programmable stand-by and re-start functions
- Programmable digital I/O interface
- Modbus RTU communication compatible
- Two sets of compensation parameters for different load type compensation.

21.38

General information Power quality filter

PQF ratings and capabilities

Power modules for the PQF are available with voltage ratings up to 600V for 50 or 60 Hz. The maximum thermal rating of a single cubicle is 450 A rms. Absolute harmonic filtering capability also depends on the content of higher harmonics with the filtering capability following common load spectra. The reactive power compensation capacity per module is given by the thermal rating.

On site extensions are easily made by adding cubicle sections to a maximum of eight cubicles. Several PQF may operate together on the same network.

Systems for 50 Hz and 60 Hz applications can filter 20 different harmonics from the 2nd to the 50th harmonic.

Selected harmonics can be filtered completely, or to a predescribed level defined in absolute or relative terms.

Reactive power compensation may be chosen and controlled to a desired power factor.

The PQF is programmed through the PQF-Manager graphical user interface. Optional PQF-Link software enables users to program the active filter through an RS232 port using a standard PC.

UL File # E254288

The PQF-Manager

The PQF-Manager is the Graphical User Interface provided in all the PQF types as a standard accessory. It offers direct control, programming, monitoring capabilities without a PC, communication facilities and detailed fault and event logging with real time stamp. The PQF-Manager (144 x 144 mm), fitted in the front panel of the PQF with its large LCD screen display (64 x 132 pixel) makes operating the filter very convenient.

21.40 1SXU000023C0202 Low Voltage Products & Systems

Application manual Dry type power factor correction capacitors

Index

Application and installation	
Capacitor installation locations	20.46
Extract from NEC, Separate overcurrent protection	20.59
General information	20.44 - 20.45
Harmonic phenomena	20.50 - 20.52
Sizing capacitors at the motor load	20.53 - 20.56
Typical recommended ratings of cables & protected devices	20.57 - 20.58

Low Voltage Network Quality

Most loads on an electrical distribution system can be categorized into three types:

- Resistive
- Inductive
- Capacitive

On modern systems, the most common is the inductive load. Typical examples include transformers, fluorescent lighting and AC induction motors.

A common characteristic of these inductive loads is that they utilize a winding in order to operate. This winding produces an electromagnetic field which allows the motor or transformer to function and requires a certain amount of electrical power to maintain this electromagnetic field.

All inductive load require two kinds of power to function properly:

- Active power (kW)
- actually performs the work
- Reactive power (kvar)
- sustains the electromagnetic field

One common example of reactive power can be seen in an unloaded AC motor. When all load is removed from the motor, one might expect the no-load current to drop near zero. In truth, however, the no-load current will generally show a value between 25% and 30% of full load current. This is because of the continuous demand for magnetizing current by any inductive load.

Active power is the total power indicated on a wattmeter. Apparent power is the combination of reactive and active power.

What is Power Factor?

Power factor is the relationship between working (active) power and total power consumed (apparent power). Essentially, power factor is a measurement of how effectively electrical power is being used. The higher the power factor, the more effectively electrical power is being used.

A distribution system's operating power is composed of two parts: Active (working) power and reactive (non-working magnetizing) power. The ACTIVE power performs the useful work . . . the REACTIVE power does not. It's only function is to develop magnetic fields required by inductive devices.

Generally, power factor decreases (phi increases) with increased motor load. This geometric relationship of apparent power to active power is traditionally expressed by the right triangle relationship of:

Cos phi = p.f. = kW/kVA

Why Improve Low Power Factor?

Low power factor means poor electrical efficiency. The lower the power factor, the higher the apparent power drawn from the distribution network.

When low power factor is not corrected, the utility must provide the nonworking reactive power IN ADDITION to the working active power. This results in the use of larger generators, transformers, bus bars, wires, and other distribution system devices that otherwise would not be necessary. As the utility's capital expenditures and operating costs are going to be higher, they are going to pass these higher expenses to industrial users in the form of power factor penalties.

Advantages of Improving Low Power Factor - Saving Money!!

- High power factor eliminates utility power factor penalties.
- High power factor reduces the heating losses of transformers and distribution equipment, prolonging life of the equipment.
- High power factor stabilizes voltage levels.
- · Increased system capacity

Figure 3 illustrates the relationship of power factor to total current consumed. With a power factor of 1.0 given a constant load, the 100% figure represents the required useful current.

As the power factor drops from 1.0 to .9, power is used less effectively. Therefore, 10% more current is required to handle the same load.

A power factor of .7 requires approximately 43% more current; and a power factor of .5 requires approximately 100% (twice as much!!) to handle the same load.

Low Voltage Products & Systems

ABB Inc. • 888-385-1221 • www.abb.us/lowvoltage

General information

How Power Factor Correction Capacitors Solve the Problem of Low Power Factor

Lower power factor is a problem that can be solved by adding power factor correction capacitors to the plant distribution system. As illustrated in Fig. 4, power factor correction capacitors work as reactive current generators "providing" needed reactive power (kvar) to the power supply. By supplying their own source of reactive power, the industrial user frees the utility from having to supply it; therefore, the total amount of apparent power (kVA) supplied by the utility will be less.

Power factor correction capacitors reduce the total current drawn from the distribution system and subsequently increase system capacity by raising the power factor level.

Capacitor Rating

Power factor correction capacitors are rated in electrical units called "vars". One var is equivalent to one volt ampere of reactive power. Vars are units of measurement for indicating how much reactive power the capacitor will supply.

As reactive power is usually measured in thousands of vars, the letter "k" (abbreviation for "kilo", meaning thousands) precedes the var creating the more familiar "kvar" term.

Fig. 5

The capacitor kvar rating shows how much reactive power the capacitor will supply. Each unit of the capacitor's kvar will decrease the inductive reactive power demand (magnetizing demand) by the same amount.

EXAMPLE:

A low voltage network requires 410 kW active power at full load, and the power factor is measured to be .70. Therefore, the system's full load consumption of apparent power is 579.5 kVA. If 300 kvar of capacitive reactive power is installed, the power factor will rise to .96 and the kVA demand will be reduced from 579.5 to 424.3 kVA. See Fig. 5.

Capacitor installation locations

Where Should Power Factor Correction Capacitors

Be installed in a distribution system?

As shown in Fig. 6, several options exist for the connection of power factor correction capacitors on the low voltage distribution system.

Option A: On the secondary of the overload relay

Advantages: This is the most efficient location since the reactive power (kvar) is produced at the same spot where it is consumed. Line losses and voltage drop are minimized. The capacitor is switched automatically by the motor starter, so it is only energized when the motor is running. No separate switching device or overcurrent protection is required because of the presence of the motor starter components.

Care must be taken in setting the overload relay since the capacitor will bring about a reduction in amps through the overload. Therefore, to give the same protection to the motor, the overload relay's trip setting should be readjusted or the heater elements should be resized. Refer to page 6.12 for line current reduction in percent of FLA.

Option B: Between the contactor and the overload relay

The advantages are the same as Option A except the overload relay can now be set to the full load amps as shown on the motor nameplate. This mounting location is normally preferred by motor control center and switchgear builders since the overload setting is simplified.

Option C: Between the circuit breaker and the contactor

<u>Advantages:</u> Since the capacitor is not switched by the contactor, it can act as a central kvar source for several motors fed by the same circuit breaker. This location is recommended for jogging, plugging and reversing applications.

Since the capacitor remains energized even when the motor or motors are not running, there exists the possibility of overcorrection and leading power factor during lightly loaded periods. Losses are higher than with Options A & B as the reactive current must be carried further.

LOCATIONS FOR CAPACITORS IN MOTOR CIRCUITS

Option D: As a central compensation source connected to the main distribution bus

Advantages: Of the four options, this is the most cost efficient because it uses a few large kvar capacitors rather than many small units.

A primary disconnect must be provided for switching and overcurrent protection. As with Option C, a real possibility of overcompensation exists during lightly loaded periods unless some form of automatic control is incorporated. Automatic control can be provided by ABB automatic capacitor banks.

21.44

Application and installation

Application and Installation

Temperature and Ventilation

Capacitors should be located in areas where the surrounding ambient temperature does not exceed 40° C and where there is adequate ventilation. As capacitors always operate at full load and generate heat of their own, maximum heat dissipation must be provided to ensure long operating life.

Line frequency and operating voltage are factors that can cause capacitor temperature to rise.

• Line Frequency - Assuming the line frequency of the capacitor matches the frequency of the incoming service, line frequency is not a concern since it is constant in modern power systems.

• **Operating Voltage** - Capacitor overheating at a normal operating voltage and with adequate ventilation seldom occurs. However, when the voltage exceeds 110% of the capacitor rating, overheating and resultant damage can happen.

When the operating voltage exceeds 110% of the capacitor's rated voltage, the line voltage should be reduced or the capacitor taken off line.

This overvoltage problem is exactly why, when determining the required kvar capacitance for a distribution system, a person should always "undersize" a capacitor's kvar rating... too much capacitance means overvoltage... too much overvoltage means excessive heat... and excessive heat can be damaging to the capacitor unit!!!

Special Applications

Care should be taken when power factor correction capacitors are used in the following applications:

- Plugging and jogging applications
- Frequent starts
- Crane or elevator motors where the load may drive the motor
- Multi-speed motors
- Motors involving open transition reduced voltage starting
- Reversing starters if they reverse more frequently than once per minute

ABB contactor kvar ratings

Contactor	208V	240V	480V	600V	Max amps
UA26	3.5	4.0	8.0	10.0	10
UA30	7.0	8.0	16.5	20.5	20
UA50	10.5	12.5	25.0	31.0	30
UA75	21.5	25.0	50.0	62.0	60
UA95	25.0	29.0	58.0	72.0	70
UA110	28.5	33.0	66.0	83.0	80
A145	43	50	100	125	120
A185	57	66	133	166	160
A210	66	77	153	192	185
A260	75	87	174	218	210
A300	88	101	203	254	245
AF400	119	137	274	343	330
AF460	142	164	329	410	396
AF580	178	205	411	514	495
AF750	214	247	495	618	595

Discharging Time

Power factor capacitors need a minimum of one minute to discharge. Afterwards, it is always recommended that the terminals be shortcircuited to ground before touching.

Typical Capacitor Specifications

The following guidelines can be used when specifying capacitors.

SPECIFICATIONS FOR CAPACITORS

600 Volts and Below

Furnish and install where indicated power factor correction capacitors of the size, voltage rating, and enclosure type shown on the drawings.

(OPTIONAL) All motors of _____ horsepower and above shall have individual power factor correction capacitors energized with the motor.

All capacitors shall be the self healing metallized-film type filled with vermiculite, a dry NONFLAMMABLE filler material; oil-filled capacitors will not be acceptable. Discharge resistors shall be provided to automatically discharge the capacitor to less than 50 volts within one minute after de-energization. An internal ground lug shall be provided. The capacitors shall withstand 135% of rated current continuously, 110% of rated voltage continuously; and an ambient temperature range of -40°C to +40°C.

Losses shall be less than 0.5 watts per kvar. Each element shall be individually protected and the enclosure shall be filled with a dry, nontoxic, nonflammable insulating material. The capacitors shall be UL Listed and CSA approved. Capacitors shall be ABB or equivalent.

Application and installation

Wiring diagrams for Autotransformer, part-winding, wye-delta, multi-speed

Power Factor Correction Capacitor connection locations

Autotransformer

Wye-delta

2 Speed, 2 winding

Application and installation Wiring diagrams for Softstarters

Softstarter

BYPASS CONTACTOR CONTROL CIRCUIT

Problems Created by Harmonics

- Excessive heating and failure of capacitors, capacitor fuses, transformers, motors, fluorescent lighting ballasts, etc.
- Nuisance tripping of circuit breaker or blown fuses
- Presence of the third harmonic & multiples of the 3rd harmonic in neutral grounding systems may require the derating of neutral conductors
- Noise from harmonics that lead to erroneous operation of control system components
- Damage to sensitive electronic equipment
- Electronic communications interference

Any device with non-linear operating characteristics can produce harmonics in your power system. If you are currently using equipment that can cause harmonics or have experienced harmonic related problems, capacitor reactor or filter bank equipment may be the solution. The following is a discussion of harmonics; the characteristics of the problem; and a discussion of our solution.

Origins of Harmonic Distortion

The ever increasing demand of industry and commerce for stability, adjustability and accuracy of control in electrical equipment led to the development of relatively low cost power diodes, thyristors, SCRs and other power semi-conductors. Now used widely in rectifier circuits for U.P.S. systems, static converters and A.C. & D.C. motor control, these modern devices replace the mercury arc rectifiers of earlier years and create new and challenging conditions for the power engineer of today. Although solid state devices, such as the thyristor, have brought significant improvements in control designs and efficiency, they have the disadvantage of producing harmonic currents.

Harmonic currents can cause a disturbance on the supply network and adversely affect the operation of other electrical equipment including power factor correction capacitors.

We are concentrating our discussions on harmonic current sources associated with solid state power electronics but there are actually many other sources of harmonic currents. These sources can be grouped into three main areas:

1. Power electronic equipment: Variable speed drives (AC VFD's, DC drives, PWM drives, etc.); UPS systems, rectifiers, switch mode power supplies, static converters, thyristor systems, diode bridges, SCR controlled induction furnaces and SCR controlled systems.

2. Arcing equipment: Arc furnaces, welders, lighting (mercury vapor, fluorescent)

3. Saturable devices: Transformers, motors, generators, etc. The harmonic amplitudes on these devices are usually insignificant compared to power electronic and arcing equipment, unless saturation occurs.

Waveform

21

Harmonics are sinusoidal waves that are integral multiples of the fundamental 60 Hz waveform (i.e., 1st harmonic =

60 Hz; 5th harmonic = 300 Hz). All complex waveforms can be resolved into a series of sinusoidal waves of various frequencies, therefore any complex waveform is the sum of a number of odd or even harmonics of lesser or greater value. Harmonics are continuous (steady-state) dis-

of lesser or greater value. Harmonics are continuous (steady-state) disturbances or distortions on the electrical network and are a completely different subject or problem from line spikes, surges, sags, impulses, etc., which are categorized as transient disturbances.

Transient problems are usually solved by installing suppression or isolation devices such as surge capacitors, isolation transformers or M.O.V.s. These devices will help solve the transient problems but will not affect the mitigation of low order harmonics or solve harmonic resonance problems.

Harmonic Content

Thyristor and SCR converters are usually referred to by the number of DC current pulses they produce each cycle. The most commonly used are 6 pulse and 12 pulse.

There are many factors that can influence the harmonic content but typical harmonic currents, shown as a percentage of the fundamental current, are given in the below table. Other harmonics will always be present, to some degree, but for practical reasons they have been ignored.

Order of	Typical percentage of harmonic current						
narmonic	6 Pulse	12 pulse					
1	100	100					
5	20	-					
7	14	-					
11	9	9					
13	8	8					
17	6	-					
19	5	-					
23	4	4					
25	4	4					

Harmonic Overloading of Capacitors

The impedance of a circuit dictates the current flow in that circuit. As the supply impedance is generally considered to be inductive, the network impedance increases with frequency while the impedance of a capacitor decreases. This causes a greater proportion of the currents circulating at frequencies above the fundamental supply frequency to be absorbed by the capacitor, and all equipment associated with the capacitor.

In certain circumstances, harmonic currents can exceed the value of the fundamental (60 Hz) capacitor current. These harmonic problems can also cause an increased voltage across the dielectric of the capacitor which could exceed the maximum voltage rating of the capacitor, resulting in premature capacitor failure.

Harmonic Resonance

The circuit or selective resonant frequency is reached when the capacitor reactance and the supply $\label{eq:constraint}$

reactance are equal.

Whenever power factor correction capacitors are applied to a distribution network, which combines capacitance and inductance, there will always be a frequency at which the capacitors are in parallel resonance with the supply.

If this condition occurs on, or close to, one of the harmonics generated by solid state control equipment, then large harmonic currents can circulate between the supply net-

Fig. 8

work and the capacitor equipment. These currents are limited only by the damping resistance in the circuit. Such currents will add to the

Harmonic phenomena

harmonic voltage disturbance in the network causing an increased voltage distortion.

This results in a higher voltage across the capacitor and excessive current through all capacitor components. Resonance can occur on any frequency, but in general, the resonance we are concerned with is on, or close to, the 5th, 7th, 11th and 13th harmonics for 6 pulse systems. See Fig. 8.

Avoiding Resonance

There are a number of ways to avoid resonance when installing capacitors. In larger systems it may be possible to install them in a part of the system that will not result in a parallel resonance with the supply. Varying the kvar output rating of the capacitor bank will alter the resonant frequency. With capacitor switching there will be a different resonant frequency for each step. Changing the number of switching steps may avoid resonance at each step of switching. See Fig. 9.

Overcoming Resonance

If resonance cannot be avoided, an alternative solution is required. A reactor must be connected in series with each capacitor such that the

capacitor/reactor combination is inductive at the critical frequencies but capacitive at the fundamental frequency. To achieve this, the capacitor and series connected reactor must have a tuning frequency below the lowest critical order of harmonic, which is usually the 5th. This means the tuning frequency is in the range of 175 Hz to 270 Hz, although the actual frequency will depend upon the magnitude and order of the harmonic currents present.

capacitor circuit increases the fundamental voltage across the capacitor.

The addition of a reactor in the

Therefore, care should be taken when adding reactors to existing capacitors. See Fig. 10.

Reduction of Harmonic Distortion

Harmonic currents can be significantly reduced in an electrical system by using a harmonic filter.

In its basic form, a filter consists of a capacitor connected in series with a reactor tuned to a specific harmonic frequency. In theory, the impedance of the filter is zero at the tuning frequency; therefore, the harmonic current is absorbed by the filter. This, together with the natural resistance of the circuit, means that only a small level of harmonic current will flow in the network.

Types of Filters

The effectiveness of any filter design depends on the reactive output of the filter, tuning accuracy and the impedance of the network at the point of connection.

Harmonics below the filter tuning frequency will be amplified. The filter design is important to ensure that distortion is not amplified to unacceptable levels. Where there are several harmonics present, a filter may reduce some harmonics while increasing others. A filter for the 7th harmonic creates a parallel

resonance in the vicinity of the 5th harmonic with magnification of the existing 5th harmonic;

therefore, a 7th harmonic filter requires a 5th harmonic

filter. See Fig. 11. Consequently, it is often necessary to use a multiple filter design where each filter is tuned to a different frequency. Experience is extremely important in the design of such filters to ensure:

- (a) the most efficient and cost effective solution is selected;
- (b) no adverse interaction between the system and the filter.

Load Alteration

Whenever load expansion is considered, the network is likely to change and existing filter equipment should be evaluated in conjunction with the new load condition. It is not recommended to have two or more filters tuned to the same frequency connected on the same distribution system. Slight tuning differences may cause one filter to take a much larger share of the harmonic distortion. Or, it may cause amplification of the harmonic order which the equipment has been designed to reduce. When there is a need to vary the power factor correction component of a harmonic filter, careful consideration of all load parameters is necessary.

Harmonic Analysis

The first step in solving harmonic related problems is to perform an analysis to determine the specific needs of your electrical distribution system. To determine capacitor and filter requirements, it is necessary to establish the impedance of the supply network and the value of each harmonic current. Capacitor, reactor and filter bank equipment are then specified under very detailed and stringent computer analysis to meet your needs.

Your ABB Solution to Harmonics

ABB is the world's largest manufacturer of dry type low voltage capacitors! ABB Control Inc. utilizes this experience in recommending three options to solve the problems associated with applying capacitors to systems having harmonic distortion:

1. Apply the correct amount of capacitance (kvar) to the network to avoid resonance with the source. This may be difficult, especially in automatic systems as the capacitance is always changing. This solution usually means connecting less capacitance to the system than is actually needed for optimum power factor correction.

2. Install reactors in series with capacitors to lower the resonance below critical order harmonics; i.e., 5th, 7th, 11th & 13th. This design tunes the resonant frequency of the system well below the critical harmonic and is called an anti-resonance bank. This solution allows the capacitors to operate in a harmonic environment.

Harmonic phenomena

3. Filters are recommended if a problem exists with harmonic distortion before the application of power factor correction, or if the harmonic distortion is above the limits recommended in IEEE 519, "Guide for Harmonic Control and Reactive Compensation of Static Power Converters". (The recommended limits for voltage distortion in IEEE 519 are presently 5% for general applications.) Tuned filters sized to reduce the harmonic distortion at critical frequencies have the benefits of correcting the power factor and improving the network power quality.

With our knowledge of harmonics, ABB provides a complete range of products from individual capacitors, fixed banks and automatic banks, to power filter systems. All these products utilize dry type low voltage ABB power factor correction capacitor elements which are self-healing for internal faults.

To maintain stringent quality control standards, most control components found in automatic and anti-resonance filter bank products are also ABB products. These products include contactors, circuit breakers, control relays, disconnect switches, power factor relays and pushbutton devices.

ABB Capacitor Features & Services

Every ABB Control low voltage capacitor product incorporates our unique dry type design. Therefore, environmental and personnel concerns associated with leakage or flammability of conventional oil-filled units are eliminated. Other features include:

- Patented Sequential Protection System includes dry, self-healing design; internally protected elements; and dry, non-flammable vermiculite filler
- Individual units, fixed and automatic capacitor bank designs, 208-600V
- Automatic and fixed tuned or anti-resonance capacitor banks
- Power factor and harmonic studies
- UL and CSA

21.50 1SXU000023C0202

Sizing capacitors at the motor load Using formulas

Sizing Capacitors at the Motor Load

When the determination is made that power factor correction capacitors ARE a good investment for a particular electrical system, you need to know:

- How many capacitors are needed?
- What sizes are appropriate?

The capacitor provides a local source of reactive current. With respect to inductive motor load, this reactive power is the magnetizing or "no-load current" which the motor requires to operate.

A capacitor is properly sized when its full load current rating is 90% of the no-load current of the motor. This 90% rating avoids overcorrection and the accompanying problems such as overvoltages.

One Selection Method: Using Formulas

If no-load current is known . . .

TABLE 1

480 VOLT, 60 Hz., 3-Phase

The most accurate method of selecting a capacitor is to take the noload current of the motor, and multiply by .90 (90%). Take this resulting figure, turn to the appropriate catalog page, and determine which kvar size is needed, catalog number, enclosure type, and price.

EXAMPLE: Size a capacitor for a 100hp, 460V 3-phase motor which has a full load current of 124 amps and a no-load current of 37 amps.

1. Multiply the no-load current figure of 37 amps by 90%.

37 no load amps X 90% = 33 no load amps

2. Turning to the catalog page for 480 volt, 3-phase capacitors, find the closest amp rating to, but NOT OVER 33 amps. See Table 1, sample catalog pricing chart. Per the sample chart the closest amperage is 32.5 amps. The proper capacitor unit, then is 27 kvar and the appropriate catalog number depends on the type enclosure desired.

NOTE

The formula method corrects power factor to approximately .95

If the no load current is not known . . . If the no-load current is unknown, a rea

If the no-load current is unknown, a reasonable estimate for 3-phase motors is to take the full load amps and multiply by 30%. Then take that figure and multiply times the 90% rating figure being used to avoid overcorrection and overvoltages.

EXAMPLE: Size a capacitor for a 75hp, 460V 3-phase motor which has a full load current of 92 amps and an unknown no-load current.

1. First, find the no-load current by multiplying the full load current times 30%.

92 (full load amps) X 30% = 28 estimated no-load amps

2. Multiply 28 no-load amps by 90%.

28 no-load amps X 90% = 25 no-load amps

3. Now examine the capacitor pricing and selection chart for 480 volt, 3-phase capacitors. Refer again to Table 1. Here it will be seen that the closest capacitor to 25 amps full load current without going over is a 20 kvar unit, rated at 24.1 amps.

4. The correct selection, then, is 20 kvar!

An Alternate Selection Method - Using Charts

TABLE 2: Suggested Maximum Capacitor Ratings for T-Frame NEMA Class B Motors

	NOMINAL MOTOR SPEED											
Induction	3600 R	/Min	1800	R/Min	1200	R/Min	900 F	R/Min	720 R	/Min	600 F	R/MIN
motor rating (HP)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reductions (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)	Capacitor rating (kvar)	Line current reduction (%)
3 5 7.5 10 15	1.5 2 2.5 4 5	14 14 14 14 12	1.5 2.5 3 4 5	23 22 20 18 18	2.5 3 4 5 6	28 26 21 21 20	3 4 5 6 7.5	38 31 28 27 24	3 4 5 7.5 8	40 40 38 36 32	4 5 6 8 10	40 40 45 38 34
20 25 30 40 50	6 7.5 8 12 15	12 12 11 12 12 12	6 7.5 8 13 18	17 17 16 15 15	7.5 8 10 16 20	19 19 19 19 19 19	9 10 14 18 22.5	23 23 22 21 21	12 12 15 22.5 24	25 25 24 24 24 24	18 18 22.5 25 30	30 30 30 30 30 30
60 75 100 125 150	18 20 22.5 25 30	12 12 11 10 10	21 23 30 36 42	14 14 14 12 12	22.5 25 30 35 40	17 15 12 12 12 12	26 28 35 42 52.5	20 17 16 14 14	30 33 40 45 52.5	22 14 15 15 14	35 40 45 50 60	28 19 17 17 17
200 250 300 350 400 450	35 40 45 50 75 80	10 11 11 12 10 8	50 60 68 75 80 90	11 10 10 8 8 8	50 62.5 75 90 100 120	10 10 12 12 12 12 12	65 82 100 120 130 140	13 13 14 13 13 13	68 87.5 100 120 140 160	13 13 13 13 13 13 13 14	90 100 120 135 150 160	17 17 17 15 15 15
500	100	8	120	9	150	12	160	12	180	13	180	15

Applies to three-phase, 60Hz motors when switched with capacitors as a single unit.

Another method of selecting the proper capacitor employs the use of only a selection chart shown in Table 2 or 3. These tables take other variables such as motor RPM into consideration in making recommendations for capacitor applications. They are convenient because they only require that the user know the horsepower and RPM of the motor. Both tables estimate the percentage reduction in full load current drawn by the motor as a result of the capacitor's installation.

WARNING!

NEVER OVERSIZE CAPACITORS OR EXCEED 1.0 POWER FACTOR OR RESULTING PROBLEMS WITH THE MOTOR CAN OCCUR!!

If calculations or a kvar determination chart indicate a kvar rating not found in a pricing and selection chart, always refer to the next lower kvar rating!

EXAMPLE: A manufacturer needs to determine the proper capacitors required for a 1200 RPM, 75HP T-Frame NEMA class B motor.

1. First find 75 in the horsepower column of the chart.

2. Locate the 1200 RPM capacitor rating (kvar) column. Note the figure of 25 kvar.

3. Now refer to the appropriate pricing and selection chart Table 1, page 6.11. The appropriate kvar rating is 25 kvar. Depending on the desired enclosure, the price and catalog number can then be easily determined.

NOTE

Using the above charts for selecting capacitors will correct power to approximately .95.

TABLE 3: Suggested Maximum Capacitor Ratings for U-Frame NEMA Class B Motors

	NEMA Motor Design A or B												
	Normal Running Current												
H.P.	3600	RPM	1800	RPM	1200	RPM	900	RPM	720	RPM	600 RPM		
Rating	kvar	%AR	kvar	%AR	kvar	%AR	kvar	%AR	kvar	%AR	kvar	%AR	
3	1.5	14	1.5	15	1.5	20	2	27	2.5	35	3.5	41	
5	2	12	2	13	2	17	3	25	4	32	4.5	37	
7.5	2.5	11	2.5	13	2	15	4	22	5.5	30	6	34	
10	3	10	3	11	3.5	14	5	21	6.5	27	7.5	31	
15	4	9	4	10	5	13	6.5	18	8	23	9.5	27	
20	5	9	5	10	5	11	7.5	18	10	20	10	25	
25	5	6	5	8	7.5	11	7.5	13	10	20	10	21	
30	5	5	5	8	7.5	11	10	15	15	22	15	25	
40	7.5	8	10	8	10	10	15	16	15	18	15	20	
50	10	7	10	8	10	9	15	12	20	15	25	22	
60	10	6	10	8	15	10	15	11	20	15	25	20	
75	15	7	15	8	15	9	20	11	30	15	40	20	
100	20	8	20	8	25	9	30	11	40	14	45	18	
125	20	6	25	7	30	9	30	10	45	14	50	17	
150	30	6	30	7	35	9	40	10	50	17	60	17	
200	40	6	40	7	45	8	55	11	60	12	75	17	
250	45	5	45	6	60	9	70	10	75	12	100	17	
300	50	5	50	6	75	9	75	9	80	12	105	17	

Applies to three-phase, 60Hz motors when switched with capacitors as a single unit.

Sizing capacitors at the motor load Using charts

Power factor correction chart

Original		DESIRED CORRECTED POWER FACTOR IN PER CENT																			
factor in percent	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
50	0.982	1.008	1.034	1.060	1.086	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1.403	1.442	1.481	1.529	1.590	1.732
51 52 53 54 55	.937 .893 .850 .809 .769	.962 .919 .876 .835 .795	.989 .945 .902 .861 .821	1.015 .971 .928 .887 .847	1.041 .997 .954 .913 .873	1.067 1.023 .980 .939 .899	1.094 1.050 1.007 .966 .926	1.120 1.076 1.033 .992 .952	1.147 1.103 1.060 1.019 .979	1.175 1.131 1.088 1.047 1.007	1.203 1.159 1.116 1.075 1.035	1.231 1.187 1.144 1.103 1.063	1.261 1.217 1.174 1.133 1.090	1.292 1.248 1.205 1.164 1.124	1.324 1.280 1.237 1.196 1.156	1.358 1.314 1.271 1.230 1.190	1.395 1.351 1.308 1.267 1.228	1.436 1.392 1.349 1.308 1.268	1.484 1.440 1.397 1.356 1.316	1.544 1.500 1.457 1.416 1.377	1.687 1.643 1.600 1.669 1.519
56 57 58 59 60	.730 .692 .655 .618 .584	.756 .718 .681 .644 .610	.782 .744 .707 .670 .636	.808 .770 .733 .696 .662	.834 .796 .759 .722 .688	.860 .822 .785 .748 .714	.887 .849 .812 .775 .741	.913 .875 .838 .801 .767	.940 .902 .865 .828 .794	.968 .930 .893 .856 .822	.996 .958 .921 .884 .850	1.024 .986 .949 .912 .878	1.051 1.013 .976 .939 .907	1.085 1.047 1.010 .973 .939	1.117 1.079 1.042 1.005 .971	1.151 1.113 1.076 1.039 1.005	1.189 1.151 1.114 1.077 1.043	1.229 1.191 1.154 1.117 1.083	1.277 1.239 1.202 1.165 1.131	1.338 1.300 1.263 1.226 1.192	1.480 1.442 1.405 1.368 1.334
61 62 63 64 65	.549 .515 .483 .450 .419	.575 .541 .509 .476 .445	.601 .567 .535 .502 .471	.627 .593 .561 .528 .497	.653 .619 .587 .554 .523	.679 .645 .613 .580 .549	.706 .672 .640 .607 .576	.732 .698 .666 .633 .602	.759 .725 .693 .660 .629	.787 .753 .721 .688 .657	.815 .781 .749 .716 .685	.843 .809 .777 .744 .713	.870 .836 .804 .771 .740	.907 .870 .838 .805 .774	.936 .902 .870 .837 .806	.970 .936 .904 .871 .840	1.008 .974 .942 .909 .878	1.048 1.014 .982 .949 .918	1.096 1.062 1.030 .997 .966	1.157 1.123 1.091 1.058 1.027	1.299 1.265 1.233 1.200 1.169
66 67 68 69 70	.368 .358 .329 .299 .270	.414 .384 .355 .325 .296	.440 .410 .381 .351 .322	.466 .436 .407 .377 .348	.492 .462 .433 .403 .374	.518 .488 .459 .429 .400	.545 .515 .486 .456 .427	.571 .541 .512 .482 .453	.598 .568 .539 .509 .480	.626 .596 .567 .537 .508	.654 .624 .595 .565 .536	.682 .652 .623 .593 .564	.709 .679 .650 .620 .591	.743 .713 .684 .654 .625	.775 .745 .716 .686 .657	.809 .779 .750 .720 .691	.847 .817 .788 .758 .729	.887 .857 .828 .798 .769	.935 .905 .876 .840 .811	.996 .966 .937 .907 .878	1.138 1.108 1.079 1.049 1.020
71 72 73 74 75	.242 .213 .186 .159 .132	.268 .239 .212 .185 .158	.294 .265 .238 .211 .184	.320 .291 .264 .237 .210	.346 .317 .290 .263 .236	.372 .343 .316 .289 .262	.399 .370 .343 .316 .289	.425 .396 .369 .342 .315	.452 .423 .396 .369 .342	.480 .451 .424 .397 .370	.508 .479 .452 .425 .398	.536 .507 .480 .453 .426	.563 .538 .507 .480 .453	.597 .568 .541 .514 .487	.629 .600 .573 .546 .519	.663 .634 .607 .580 .553	.701 .672 .645 .616 .591	.741 .712 .685 .658 .631	.783 .754 .727 .700 .673	.850 .821 .794 .767 .740	.992 .963 .936 .909 .882
76 77 78 79 80	.105 .079 .053 .026 .000	.131 .105 .079 .052 .026	.157 .131 .105 .078 .052	.183 .157 .131 .104 .078	.209 .183 .157 .130 .104	.235 .209 .183 .156 .130	.262 .236 .210 .183 .157	.288 .262 .236 .209 .183	.315 .289 .263 .236 .210	.343 .317 .291 .264 .238	.371 .345 .319 .292 .266	.399 .373 .347 .320 .294	.426 .400 .374 .347 .321	.460 .434 .408 .381 .355	.492 .466 .440 .413 .387	.526 .500 .474 .447 .421	.564 .538 .512 .485 .459	.604 .578 .552 .525 .499	.652 .620 .594 .567 .541	.713 .687 .661 .634 .608	.855 .829 .803 .776 .750
81 82 83 84 85		.000. - - -	.026 .000 - - -	.052 .026 .000 -	.078 .052 .026 .000	.104 .078 .052 .026 .000	.131 .105 .079 .053 .027	.157 .131 .105 .079 .053	.184 .158 .132 .106 .080	.212 .186 .160 .134 .108	.240 .214 .188 .162 .136	.268 .242 .216 .190 .164	.295 .269 .243 .217 .191	.329 .303 .277 .251 .225	.361 .335 .309 .283 .257	.395 .369 .343 .317 .291	.433 .407 .381 .355 .329	.473 .447 .421 .395 .369	.515 .489 .463 .437 .417	.582 .556 .530 .504 .478	.724 .698 .672 .645 .620
86 87 88 89 90	- - - -	-	- - - -				.000. - - -	.026 .000 - - -	.053 .027 .000 - -	.081 .055 .028 .000	.109 .082 .056 .028 .000	.137 .111 .084 .056 .028	.167 .141 .114 .086 .058	.198 .172 .145 .117 .089	.230 .204 .177 .149 .121	.265 .238 .211 .183 .155	.301 .275 .248 .220 .192	.343 .317 .290 .262 .234	.390 .364 .337 .309 .281	.451 .425 .398 .370 .342	.593 .567 .540 .512 .484
91 92 93 94 95		-	- - -					- - -	- - - -			.000. - - -	.030 .000 - - -	.061 .031 .000 -	.093 .063 .032 .000	.127 .097 .066 .034 .000	.164 .134 .103 .071 .037	.206 .176 .145 .113 .079	.253 .223 .192 .160 .126	.314 .284 .253 .221 .87	.456 .426 .395 .363 .328
96 97 98 99	- - -	-	- - -	- - -	- - -		- - -	- - -	- - -		- - -	-	- - -	- - -	- - -	- - -	.000 - - -	.042 .000 - -	.089 .047 .000	.150 .108 .061 .000	.292 .251 .203 .142

Sizing Capacitors for Improving System Power Factor

Sizing and selecting capacitors for system power factor correction is calculated using a Power Factor Correction Chart. Before this chart can be used, however, the total kW requirement needs to be known for the ENTIRE system in addition to the PRESENT and DESIRED power factors.

EXAMPLE: A plant has a present power factor level of .75; a load draws 806 amps at 480V; average power consumption of 500kW; and a desired power factor level of .90. Compute the necessary capacitance required and select the proper automatic and fixed bank unit.

1. First, look at the left hand column of the Power Factor Correction chart entitled "Original Power Factor". Find your current power factor level of .75.

2. Second, follow the column of figures to the right of the .75 figure until you come to the column entitled ".90" (your desired power factor level).

3. The number in that row is .398. Now multiply this figure by the total plant kW of 500:

.398 X 500kW = 199 kvar

4. The resulting total of 199 represents the amount of capacitive power (kvar) required to bring the power factor to the desired level of .90.

5. Referring to the sample selection charts (See Table 4 or Table 5, next page), select the appropriate kvar rating.

NOTE: When selecting automatic bank units, select the closest kvar rating to the amount of kvar desired based on present and future applications. If the desired rating is not listed, the next higher kvar rating should be selected. When selecting fixed bank units, however, select the kvar rating WITHOUT GOING OVER (See Warning, page 6.12) the desired capacitance level.

In this example for the automatic capacitor bank, 200 kvar is the closest to the desired 199 kvar. For the fixed capacitor bank, 180 kvar should be selected without going over the desired kvar of 199.

Sizing capacitors at the motor load

Using charts

What if Present Power Factor Cannot Be Determined Because kVA is Unknown?

1. First, find the apparent power (kVA). kVA demand on a 3-phase system is equal to:

kVA = VOLTS x AMPS $x\sqrt{3} \div 1000$

2. The voltage and amperage of the distribution system will be known. Again, using the above example, we know that the distribution system is 480 volts and draws 806 amps. Therefore:

480 VOLTS x 806 AMPS x√3 ÷ 1000 = 670kVA

3. Now power factor can be solved for:

500kW / 670kVA = .746 pf

4. With the power factor now known, the Power Factor Improvement chart can be used as before.

How is the Power Factor Correction Chart Used if Existing Power Factor Level is Unknown?

1. First, power factor has to be calculated. Power factor is equal to active power (kW) divided by apparent power (kVA). kW will be known because it is the total amount of power consumed over a given period of time and is the amount shown on a utility bill. Therefore:

pf = kW / kVA

2. Using the above example, 500kW divided by 670kVA equals a present power factor (pf) of .746.

500kW / 670kVA = .746 pf

3. When DETERMINING power factor, always round off to the next higher rating. Therefore, the .746 power factor figure is rounded off to .75.

NOTE: Don't confuse rounding UP a power factor figure that is manually calculated with the warning on page 46 that tells you to round DOWN when using a catalog selection chart!

4. Now that present power factor is known, the above problem can be solved as before.

FINAL EXAMPLE: A manufacturer has a 480 volt, 3-phase metered demand of 460kW. An ammeter on the system shows total current draw of 770 amps. Existing power factor and apparent power (kVA) are unknown. What is the existing system power factor and how much capacitance is required to correct to .92?

1. First, solve for kVA.

480 VOLTS x 770 AMPS x√3 ÷ 1000 = 640kVA

2. Next, solve for Power Factor.

460kW / 640kVA = .72 POWER FACTOR

3. To correct the power factor from .72 to .92 refer to the Power Factor

TABLE 5 - Automatic Capacitor Banks

Correction Chart on page 47. A factor of .534 will be determined.

4. The final step is to multiply the 460kW figure by the correction factor of .534.

460kW X .534 = 245 kvar

This system would require the installation of 245 kvar of capacitance to improve the power factor to .92. Refer to the appropriate automatic or fixed bank catalog pages, select the proper voltage and phase, then identify the proper catalog number.

Typical recommended ratings of cables & protected devices

Typical recommended ratings of cables and protected devices

3- Phase Capacitor kVar	Rated Current Per Phase (amps)	Minimum Copper Cable Size for 75oC Insulation	Recommended fuse amps Type Class RK5 (Time Delay)	Recommended Disconnect Switch Amps	Recommended MCCB Trip Amps
240 Volt					
2.5	6	#14	10	30	15
3.5	84	#14	15	30	15
5.5	10	#14 #14	20	30	20
7 5	12	#14	20	30	20
7.5	10	#12	30	30	30
10	24	#10	40	60	40
15	36	#6	60	60	60
20	48	#4	80	100	80
25	60	#4	100	100	90
30	72	#2	125	200	110
40	96	#1	175	200	150
50	120	1/0	200	200	200
60	144	2/0	250	400	225
75	190	250 komil	200	400	300
100	0.41	200 Komil	400	400	300
100	241		400	400	400
125	301	(2) - 4/0	500	600	500
150	361	(2) - 250 kcmil	600	600	600
200	481	(2) - 400 kcmil	800	800	750
250	601	(3) - 300 kcmil	1000	1000	900
300	722	(3) - 400 kcmil	1200	1200	1100
480 Volt					
1.5	1.8	#14	3	30	15
2	1.8	#14	3	30	15
25	3	#1 <i>1</i>	6	30	15
2.5	36	#14	6	30	15
3	3.0	#14	0	30	10
3.5	4.2	#14	10	30	15
4	4.8	#14	10	30	15
5	6	#14	10	30	15
6	7.2	#14	15	30	15
6.5	7.8	#14	15	30	15
7.5	9	#14	15	30	15
10	12	#14	20	30	20
15	18	#12	30	30	30
20	24	#10	40	60	40
25	30	#8	50	60	50
30	36	#6	60	60	60
25	42	#6	70	100	70
40	42	#0	70	100	70
40	40	#4	80	100	80
45	54	#4	90	100	90
50	60	#4	100	100	90
60	72	#2	125	200	110
70	84	#1	150	200	150
75	90	#1	150	200	150
80	96	#1	175	200	150
90	108	1/0	200	200	175
100	120	2/0	200	200	200
150	180	250 kcmil	300	400	300
200	2/1	400 komil	400	400	400
200	241		400	400	400
∠0U	301	(2) - 4/0	500	600	500
300	361	(2) - 250 KCMI	600	600	600
350	421	(2) - 300 kcmil	700	800	650
400	481	(2) - 400 kcmil	800	800	750
500	601	(3) - 300 kcmil	1000	1000	902

Typical recommended ratings of cables & protected devices

Typical recommended ratings of cables and protected devices

3-Phase Capacitor kvar	Rated Current Per Phase (amps)	Minimum Copper Cable Size for 75oC Insulation	Recommended fuse amps Type RK5 (Time Delay)	Recommended Disc Switch Amps	Recommended MCCB Trip Amps
600 Volt					
2	2	#14	3	30	15
3	3	#14	6	30	15
4	4	#14	6	30	15
5	5	#14	10	30	15
7.5	7	#14	15	30	15
10	10	#14	20	30	15
15	14	#14	25	30	25
20	19	#10	35	60	30
25	24	#10	40	60	40
30	29	#8	50	60	50
35	34	#8	60	60	60
40	38	#6	70	100	60
45	43	#6	80	100	70
50	48	#4	80	100	80
60	58	#4	100	100	90
70	67	#2	125	200	110
80	77	#2	150	200	125
90	87	#1	150	200	150
100	96	#0	175	200	150
150	144	3/0	250	400	225
200	192	300 kcmil	350	400	300
250	241	400 kcmil	400	400	400
300	289	(2) - 3/0	500	600	450
350	337	(2) - 4/0	600	600	550
400	385	(2) - 300 kcmil	650	800	600
500	481	(2) - 400 kcmil	800	800	750

NOTE: Cable sizes are derived from Article 310, Table 310-16 of 2002 NEC ®

The above table gives recommended ratings of cables, disconnect switches, and/or molded case circuit breakers for use with capacitor loads. For requirements not covered in the table, the following application guidelines may be used for capacitor switching duty:

- Power Cable Sizing
 135% of Capacitor Current
- Disconnect Switch
 165% of Capacitor Current
- Molded Case Circuit Breaker
 135% of Capacitor Current

Note: For specific applications, refer to the NEC®.

NOTE: National Electric Code® and NEC® are registered trademarks of the National Fire Protection Association, Inc., Quincy, MA 02269

Extract from *NEC*[®] Separate overcurrent protection

Extract from 2002 NEC® Code Requirements

460-8. Conductors.

(A) Ampacity. The ampacity of capacitor circuit conductors shall not be less than 135 percent of the rated current of the capacitor. The ampacity of conductors that connect a capacitor to the terminals of a motor or to motor circuit conductors shall not be less than one third the ampacity of the motor circuit conductors and in no case less than 135 percent of the rated current of the capacitor.

(B) Overcurrent Protection. An overcurrent device shall be provided in each ungrounded conductor for each capacitor bank. The rating or setting of the overcurrent device shall be as low as practicable.

Exception: A separate overcurrent device shall not be required for a capacitor connected on the load side of a motor overload protective device.

(C) Disconnecting Means. A disconnecting means shall be provided in each ungrounded conductor for each capacitor bank and shall meet the following requirements.

(1) The disconnecting means shall open all ungrounded conductors simultaneously.

(2) The disconnecting means shall be permitted to disconnect the capacitor from the line as a regular operating procedure.

(3) The rating of the disconnecting means shall not be less than 135 percent of the rated current of the capacitor.

Exception: A separate disconnecting means shall not be required where a capacitor is connected on the load side of a motor controller.

460-9. Rating or Setting of Motor Overload Device. Where a motor installation includes a capacitor connected on the load side of the motor overload device, the rating or setting of the motor overload device shall be based on the improved power factor of the motor circuit.

The effect of the capacitor shall be disregarded in determining the motor circuit conductor rating in accordance with Section 430-22.

NOTE: National Electric Code[®] and NEC[®] are registered trademarks of the National Fire Protection Association, Inc., Quincy, MA 02269

Reprinted with permission from NFPA 70-2002, <u>The National Electrical Code</u>, 2002, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the NFPA, on the referenced subject which is represented only by the standard in its entirety.

Separate overcurrent protection

A separate overcurrent device is not necessary when an ABB capacitor is electrically connected on the load side of the motor starter fused safety switch or breaker. Personnel and facility short circuit protection is provided within the capacitor by ABB's patented Sequential Protection System. Short circuit protection between the main feed and the capacitor is provided by the motor starter fused safety switch or breaker. A disconnect switch can be provided when the capacitor is connected as illustrated in Option C (See Fig. 12). When the capacitor is connected as shown in Option C, the capacitor remains energized when the motor is off. The optional disconnect switch provides a means to disconnect the capacitor when the motor is not in operation.

21.58 1SXU000023C0202 Low Voltage Products & Systems